精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.
(1)求证:△BCF≌△DCE;
(2)求证:BF=DE,BF⊥DE;
(3)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.
(1)证明:∵四边形ABCD是正方形,
∴∠BCD=90°,BC=CD,
∴∠BCF+∠FCD=90°,
∵△ECF是等腰直角三角形,CF=CE,
∴∠ECD+∠FCD=90°,
∴∠BCF=∠ECD.
在△BCF和△DCE中,
BC=DC
∠BCF=∠DCE
CF=CE

∴△BCF≌△DCE(SAS);

(2)证明:延长BF交DE于H,
∵△BCF≌△DCE,
∴BF=DE,∠CBF=∠CDE,
∵∠CBF+∠1=90°,∠1=∠2,
∴∠2+∠CDE=90°,
∴∠DHF=90°,
∴BF⊥DE;

(3)在△BFC中,BC=5,CF=3,∠BFC=90°,
∴BF=
BC2-CF2
=
52-32
=4.
∵△BCF≌△DCE,
∴DE=BF=4,∠BFC=∠DEC=∠FCE=90°.
∴DEFC.
∴△DGE△CGF.
∴DG:GC=DE:CF=4:3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作第1个正方形OB1B2C1,再以对角线OB2为一边作第2个正方形OB2B3C2,…依次下去,则:
(1)第1个正方形的边长=______;
(2)第10个正方形的边长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.
(1)求证:△BCF≌△DCE;
(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为(  )cm2
A.
1
4
B.
n
4
C.
n-1
4
D.
1
4n

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知:ABCD是正方形,E是CF上的一点,若DBEF是菱形,则∠EBC等于(  )
A.15°B.22.5°C.30°D.25°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设正方形ABCD的边CD的中点为E,F是CE的中点(图).求证:∠DAE=
1
2
∠BAF

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在□ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连接EG、GF、FH、HE.

(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是______;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是______;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形ABCD的内侧,作等边三角形ADE,则∠AEB的度数是(  )
A.60°B.65°C.70°D.75°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=
1
2
AB,那么DF,BE在数量上有什么关系,并说明理由.

查看答案和解析>>

同步练习册答案