精英家教网 > 初中数学 > 题目详情
(2012•乐山)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠An-1BC的平分线与∠An-1CD的平分线交于点An.设∠A=θ.则:
(1)∠A1=
θ
2
θ
2

(2)∠An=
θ
2n
θ
2n
分析:(1)根据角平分线的定义可得∠A1BC=
1
2
∠ABC,∠A1CD=
1
2
∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)与(1)同理求出∠A2,可以发现后一个角等于前一个角的
1
2
,根据此规律即可得解.
解答:解:(1)∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,
∴∠A1BC=
1
2
∠ABC,∠A1CD=
1
2
∠ACD,
又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1
1
2
(∠A+∠ABC)=
1
2
∠ABC+∠A1
∴∠A1=
1
2
∠A,
∵∠A=θ,
∴∠A1=
θ
2


(2)同理可得∠A2=
1
2
∠A1=
1
2
1
2
θ=
θ
22

所以∠An=
θ
2n

故答案为:(1)
θ
2
,(2)
θ
2n
点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•乐山)如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2

其中正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山)如图,⊙O是四边形ABCD的内切圆,E、F、G、H是切点,点P是优弧
EFH
上异于E、H的点.若∠A=50°,则∠EPH=
65°
65°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)
(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距20
3
千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.
(1)求该轮船航行的速度;
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:
2
≈1.414
3
≈1.732

查看答案和解析>>

同步练习册答案