精英家教网 > 初中数学 > 题目详情
20.如图,已知直线y=-$\frac{3}{4}$x+6与x轴、y轴分别交于A、B两点,点C在直线y=-x上,若点D与A,B,C是平行四边形的四个顶点,则线段CD长的最小值为7$\sqrt{2}$.

分析 分两种情形:①当AB∥CD时,CD=AB=10,②当CD为对角线时,AB的中点E(4,3),设C(x,-x),求出CE,构建二次函数利用二次函数的性质解决最值问题.

解答 解:①当AB∥CD时,CD=AB=10,
②当CD为对角线时,AB的中点E(4,3),设C(x,-x),
CE=$\sqrt{(x-4)^{2}+(-x-3)^{2}}$=$\sqrt{2{x}^{2}-2x+25}$=$\sqrt{2(x-\frac{1}{2})^{2}+\frac{49}{2}}$,
当x=$\frac{1}{2}$时,CE最小=$\frac{7\sqrt{2}}{2}$,
此时CD最小=7$\sqrt{2}$.
∵7$\sqrt{2}$<10,
∴CD的最小值为7$\sqrt{2}$.
故答案为7$\sqrt{2}$.

点评 本题考查平行四边形的性质、一次函数、两点之间的距离公式等知识,解题的关键是学会分类讨论,构建二次函数利用二次函数的性质解决最值问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.在如图平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是($\frac{\sqrt{3}}{3}$)2014

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,锐角△ABC内接于⊙O,点D是弧BC上一点,过点D的切线DE交AC的延长线于点E,且DE∥BC,连接AD、BD、CD.
求证:△ABD∽△ADE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数$y=\frac{k}{x}$的图象经过点D,四边形BCFG的面积为8,则k的值为(  )
A.16B.20C.24D.28

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在平面直角坐标系xOy中,四边形ABOC是正方形,点A的坐标为(1,1),$\widehat{A{A}_{1}}$是以点B为圆心,BA为半径的圆弧,$\widehat{{A}_{1}{A}_{2}}$是以点O为圆心,OA1为半径的圆弧,$\widehat{{A}_{2}{A}_{3}}$是以点C为圆心,CA2为半径的圆弧,$\widehat{{A}_{3}{A}_{4}}$是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心按上述做法得到的曲线AA1A2A3A4A5…称为正方形的渐开线“,那么点A5的坐标是(6,0),点A2016的坐标是(1,2017).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.“五一期间”某公司在一块平行四边形ABCD的湖中,立有一个旗杆MN,MN与湖面垂直,旗杆顶端M与湖岸的E、F两处用绳子相连.绳子上系满了彩旗.且直线EF经过旗杆底部N,EF∥AB,已知,AB=40($\sqrt{3}$+1)m.BC=30m.∠MEN=60°,∠MFN=45°,求绳子EM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,△ABC内接于⊙O,若⊙O的半径为6,∠A=60°,则$\widehat{BC}$的长为(  )
A.B.C.D.12π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)计算:$\frac{1}{\sqrt{3}}-\root{3}{8}$+|2-$\sqrt{3}$|;
(2)当关于x的方程x2-2x+c=0有实数根时,求c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,直线y=-x+2与y轴交于点A,与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数的解析式为(  )
A.y=$\frac{3}{x}$B.y=-$\frac{3}{x}$C.y=$\frac{3}{2x}$D.y=-$\frac{3}{2x}$

查看答案和解析>>

同步练习册答案