精英家教网 > 初中数学 > 题目详情
在△ABC中,∠BAC=90°,AB=AC=,圆的半径为1,如图所示,若点O在BC边上运动(与点B、C不重合),设BO=x,△AOC的面积为y。
(1)求y关于x的函数解析式,并写出自变量的取值范围。
(2)以点O为圆心,BO长为半径作圆,求当圆O与圆A 相切时,△AOC的面积。
解:(1)过点A作AD⊥BC于点D
∵∠BAC=90°  AB=AB=2    ∴BC= 4  AD=BC=2
∴S△AOC=OC×AD=×2×(4-x)= 4-x 
即y= -x+4(0<x<4)
(2)当点O与点D重合时,圆O与圆A相交,不合题意
当点O与点D不重合时,在Rt△AOD中,
AO2=AD2+OD2= 4+(2-x)2=x2-4x+8
∵⊙O1的半径是1,⊙O2的半径是x
∴①当⊙A与⊙O外切时
(x+1)2=x2-4x+8  解得x= 
此时,△AOC的面积是y= 4-=
②当⊙A与⊙O内切时(x+1)2=x2-4x+8  解得x=
此时,△AOC的面积是y= 4-=
∴当⊙A与⊙O相切时,△AOC的面积为
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动精英家教网;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.
(1)当x为何值时,PQ∥BC;
(2)当
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;

(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以4cm/s的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ;
(2)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求证:DE2=AD2+EC2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以每秒4cm,的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ
(2)当x为何值时,PQ∥BC
(3)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案