精英家教网 > 初中数学 > 题目详情

(8分)在□ABCD中,E、F分别是AB、CD的中点,连接AF、CE.

(1)求证:△BEC≌△DFA;

(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.

 

 

证明:(1)∵四边形ABCD是平行四边形

∴AB=CD,∠B=∠D,BC=AD

∵E、F分别是AB、CD的中点

∴BE=AB,DF=CD

∴BE=DF

∴△BEC≌△DFA

(2)四边形AECF是梯形。

∵四边形ABCD是平行四边形,

∴AB∥CD且AB=CD。

∵E、F分别是AB、CD的中点

∴AE=AB,CF=CD

∴AE∥CF且AE=CF。

∵CA=CB,E是AB的中点,

∴CE⊥AB,即∠AEC=90°

AECF是矩形。

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在四边形ABCD中,AC、BD是四边形ABCD的两条对角线,点E、F、G、H分别是在四边形ABCD的四边上的动点,但E、F、G、H不与A、B、C、D重合,且EF∥BD∥GH,FG∥AC∥HE.
(1)若对角线AC=BD=a(定值),求证:四边形EFGH的周长是定值;
(2)若AC=m,BD=n,m、n为定值,但m≠n,则四边形EFGH的周长是定值吗?请指出,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)

在   ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.

(1)如图①,试判断四边形EGFH的形状,并说明理由;

(2)如图②,当EF⊥GH时,四边形EGFH的形状是          ;

(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是          ;

(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分10分)
在   ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.

(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是          ;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是         ;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(山东莱芜) 题型:解答题

(本题满分10分)
在   ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.

(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是          ;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是         ;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(四川内江) 题型:解答题

(本题满分10分)

在   ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.

(1)如图①,试判断四边形EGFH的形状,并说明理由;

(2)如图②,当EF⊥GH时,四边形EGFH的形状是           ;

(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是          ;

(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.

 

查看答案和解析>>

同步练习册答案