精英家教网 > 初中数学 > 题目详情

如图,△ABP中,∠APB=120°,点C、D在线段AB上,△PCD是等边三角形,请根据所述条件,判断下列论断:①CD2=AC•DB;②AP2=AC•AB;③AP•PC=PD•PB;④BP2-BD2=AD•DB,其中正确的个数是


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
B
分析:由△ABP中,∠APB=120°,点C、D在线段AB上,△PCD是等边三角形,易证得△APC∽△PBD∽△ABP,然后由相似三角形的对应边成比例,可证得:①CD2=AC•DB;②AP2=AC•AB正确,③AP•PC=PD•PB错误,可得BP2-BD2=AB•BD-BD2=BD•(AB-BD)=AD•DB,即④正确.
解答:∵△PCD是等边三角形,
∴∠CPD=∠PCD=∠PDC=60°,PC=PD=CD,
∴∠ACP=∠PDB=120°,∠A+∠APC=∠PCD=60°,
∵∠APB=120°,
∴∠A+∠B=180°-∠APB=60°,
∴∠APC=∠B,
∴△APC∽△PBD,

∴PC•PD=AC•DB,
∴CD2=AC•DB;
故①正确;
∵∠APC=∠B,∠A是公共角,
∴△APC∽△ABP,

∴AP2=AC•AB;
故②正确;
∵△APC∽△PBD,
∴AP:PB=PC:BD,
∴AP•BD=PC•PB,
∵PC=PD=CD,
∴AP•BD=PD•PB,
故③错误;
∵△APC∽△PBD,△APC∽△ABP,
∴△PBD∽△ABP,
∴BP:AB=BD:BP,
∴BP2=AB•BD,
∴BP2-BD2=AB•BD-BD2=BD•(AB-BD)=AD•DB;
故④正确.
故选B.
点评:此题考查了相似三角形的判定与性质以及等边三角形的性质.此题难度较大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AB•h
,∴r1+r2=h(定值).
(1)类比与推理
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(2)理解与应用
△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?
 
(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=
 
.若不存在,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABP中,∠APB=∠α,把△ABP绕点A逆时针旋转60°后得到△ACE.连结BC、PE、PC,测量得∠BPC=100°.

(1)请找出图中的两个等边三角形:
△ABC,△APE
△ABC,△APE
 (不再添加其它点或线)
(2)若∠α=150°,试判断△PEC的形状,并说明你的理由;
(3)若△CPE为等腰三角形,求∠α的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABP中,∠APB=120°,点C、D在线段AB上,△PCD是等边三角形,请根据所述条件,判断下列论断:①CD2=AC•DB;②AP2=AC•AB;③AP•PC=PD•PB;④BP2-BD2=AD•DB,其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABP中,∠APB=∠α,把△ABP绕点A逆时针旋转60°后得到△ACE.连结BC、PE、PC,测量得∠BPC=100°.

(1)请找出图中的两个等边三角形:______ (不再添加其它点或线)
(2)若∠α=150°,试判断△PEC的形状,并说明你的理由;
(3)若△CPE为等腰三角形,求∠α的度数.

查看答案和解析>>

同步练习册答案