精英家教网 > 初中数学 > 题目详情

已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.

答案:
解析:

ADC,AD


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)已知:如图1,在四边形ABCD中,E是AD上一点,EC∥AB,EB∥CD,若S△DEC=1,S△ABE=3,则S△BCE=
 
;若S△DEC=S1,S△ABE=S2,S△BCE=S,请直接写出S与S1、S2间的关系式:
 

(2)如图2,△ABC、△DCE、△GEF都是等边三角形,且A、D、G在同一直线上,B、C、E、F也在同一直线上,S△ABC=4,S△DCE=9,试利用(1)中的结论得△GEF的面积为
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.
求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知:如图,梯形ABCD中,AD∥BC,点E是BC边中点,AE=DE.
(1)求证:△ABE≌△DCE;
(2)若AB=AE,四边形ABED是平行四边形吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,点P是AB延长线上一点,PC切⊙O于点C,在射线精英家教网PA上截取PD=PC,连接CD,并延长交⊙O于点E.
(1)求证:∠ABE=∠BCE;
(2)当点P在AB的延长线上运动时,判断sin∠BCE的值是否随点P位置的变化而变化,提出你的猜想并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
精英家教网
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
 
AC(用含α的三角函数表示).
精英家教网
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
精英家教网
编写试题选取的材料是
 
(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

同步练习册答案