精英家教网 > 初中数学 > 题目详情
已知二次函数的图象如图所示,
下列结论:①   ②   ③    ④    ⑤
其中正确的有(     )个
A.1B.2C.3D.4
C

试题分析:由题意可知,,对称轴是。所以,当x=0时,c在x轴下方,所以,由于函数和x轴有两个焦点,所以,所以错误,故符合条件的有3个,故选C
点评:本题属于对数形结合思想的综合考查和运用分析
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:是方程的两个实数根,且,抛物线的图像经过点A()、B().

(1)求这个抛物线的解析式;
(2) 设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D
试求出点CD的坐标和△BCD的面积;
(3) P是线段OC上的一点,过点PPH轴,与抛物线交于H点,
若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,),∠BCO=60°,OH⊥BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.

(1)求OH的长;
(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;
(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值. ②探究线段OM长度的最大值是多少,直接写出结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系

(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列各图中有可能是函数,图象的是

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB =" 2OA" = 4.

(1)求该抛物线的函数表达式;
(2)设P是(1)中抛物线上的一个动点,以P为圆心,R为半径作⊙P,求当⊙P与抛物线的对称轴lx轴均相切时点P的坐标.
(3)动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒个单位长度的速度向终点C运动,过点E作EG//y轴,交AC于点G(如图2).若E、F两点同时出发,运动时间为t.则当t为何值时,△EFG的面积是△ABC的面积的

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

,抛物线x轴于点Q、M,交y轴于点P,点P关于x轴的对称点为N。

(1)求点M、N的坐标,并判断四边形NMPQ的形状;
(2)如图,坐标系中有一正方形ABCD,其中AB=2cm且CD⊥x轴,CD的中点E与Q点重合,正方形ABCD以1cm/s的速度沿射线QM运动,当正方形ABCD完全进入四边形QPMN时立即停止运动.
①当正方形ABCD与四边形NMPQ的交点个数为2时,求两四边形重叠部分的面积y与运动时间t之间的函数关系式,并写出自变量t的取值范围;
②求运动几秒时,重叠部分的面积为正方形ABCD面积
的一半.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线轴于点,交轴于点,在轴上方的抛物线上有两点,它们关于轴对称,点轴左侧.于点于点,四边形与四边形的面积分别为6和10,则的面积之和为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下列材料:
我们知道,一次函数ykxb的图象是一条直线,而ykxb经过恒等变形可化为直线的另一种表达形式:AxBxC=0(ABC是常数,且AB不同时为0).如图1,点Pmn)到直线lAxBxC=0的距离(d)计算公式是:d 

例:求点P(1,2)到直线y x的距离d时,先将y x化为5x-12y-2=0,再由上述距离公式求得d  
解答下列问题:
如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线yx2-4x+5上的一点M(3,2).

(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案