精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtBCD中,∠CBD=90°,BC=BD,点ACB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EFEA,交CD所在直线于点F.

(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;

(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AEEF又有怎样的数量关系?请直接写出你的猜想,不需证明.

【答案】(1)证明见解析;(2)AE=EF,证明见解析.

【解析】

(1)如图1中,在BA上截取BH,使得BH=BE.证明△AHE≌△EDF,根据全等三角形的性质可得AE=EF;(2)如图2中,在BC上截取BH=BE,类比(1)的方法可证AE=EF;如图3中,在BA上截取BH,使得BH=BE.类比(1)的方法可证AE=EF.

(1)证明:如图1中,在BA上截取BH,使得BH=BE.

BC=AB=BD,BE=BH,

AH=ED,

∵∠AEF=ABE=90°,

∴∠AEB+FED=90°,AEB+BAE=90°,

∴∠FED=HAE,

∵∠BHE=CDB=45°,

∴∠AHE=EDF=135°,

∴△AHE≌△EDF,

AE=EF.

(2)如图2中,在BC上截取BH=BE,同法可证:AE=EF

如图3中,在BA上截取BH,使得BH=BE.同法可证:AE=EF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数的部分图象如图,图象过点(﹣10),对称轴为直线,下列结论:①④当时, 的增大而增大.其中正确的结论有(  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,△ABC各顶点的横、纵坐标都是整数,

(1)写出△ABC各顶点的坐标;

(2)作出△ABC关于x轴对称的图形△A1B1C1

(3)写出△A1B1C1的各顶点关于y轴对称点A2,B2,C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1B2C1B3的面积为S2B3C2B4的面积为S3,如此下去,则Sn=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC.

(1)如图1,如果∠BAD=30°,ADBC上的高,AD=AE,则∠EDC=_____度;

(2)如图2,如果∠BAD=40°,ADBC上的高,AD=AE,则∠EDC=_______度;

(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:____________________.

(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC中,∠C=90°,AC=BC=7DAB的中点,点EAC上,点FBC上,DE=DF,若BF=4,则EF=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t.

1)当t为何值时,CP把△ABC的周长分成相等的两部分;

2)当t为何值时,CP把△ABC的面积分成相等的两部分;

3)在(2)的情况下,若过点PPE//BC,且在BC上有一点FPE=CF,连结PF

BE,试探索PFBE的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC中,BDAC于点DAD3.5cm,点PQ分别为ABAD上的两个定点且BPAQ2cm,若在BD上有一动点E使PEQE最短,则PEQE的最小值为_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为(  )

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

同步练习册答案