【题目】在直角坐标系中,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3…按照这样的作法进行下去,则点A20的坐标是______.
【答案】(219,0)
【解析】
根据题意,由(1,0)和直线关系式y=x,可以求出点B1的坐标,在Rt△OA1B1中,根据勾股定理,可以求出OB1的长;再根据OB1=OA2确定A2点坐标,同理可求出A3、A4、A5……,然后再找规律,得出An的坐标,从而求得点A20的坐标.
当时,,即A1B1=,
在Rt△OA1B1中,由勾股定理得OB1=2,
∵OB1=OA2,
∴A2 (2,0)
同理可求:A3(4,0)、A4(8,0)、A5(16,0)……
由点:A1(1,0)、A2(2,0)、A3(4,0)、A4(8,0)、A5(16,0)……
即:A1(20,0)、A2(21,0)、A3(22,0)、A4(23,0)、A5(24,0)……可得An(2n-1,0)
∴点A20的坐标是(219,0),
故答案为:(219,0).
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
如图所示,请根据所学知识计算:圆形木材的直径AC是( )
A. 13寸 B. 20寸 C. 26寸 D. 28寸
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.
(1)求证:∠DEF=∠ABF;
(2)求证:F为AD的中点;
(3)若AB=8,AC=10,且EC⊥BC,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用若干个小立方块搭成一个几何体,使它从正面看与从左面看都是如图的同一个图.通过实际操作,并与同学们讨论,解决下列问题:
(1)所需要的小立方块的个数是多少?你能找出几种?
(2)画出所需个数最少和所需个数最多的几何体从上面看到的图,并在小正方形里注明在该位置上小立方块的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在菱形ABCD中,G是射线BC上的一动点(不与点B,C重合),连接AG,点E、F是AG上两点,连接DE,BF,且知∠ABF=∠AGB,∠AED=∠ABC.
(1)若点G在边BC上,如图1,则:
①△ADE与△BAF______;(填“全等”或“不全等”或“不一定全等”)
②线段DE、BF、EF之间的数量关系是______;
(2)若点G在边BC的延长线上,如图2,那么上面(1)②探究的结论还成立吗?如果成立,请给出证明;如果不成立,请说明这三条线段之间又怎样的数量关系,并给出你的证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.
①求证:四边形CODP是菱形.
②若AD=6,AC=10,求四边形CODP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,中心为点C正方形的各边分别与两坐标轴平行,若点P是与C不重合的点,点P关于正方形的仿射点Q的定义如下:设射线CP交正方形的边于点M,若射线CP上存在一点Q,满足CP+CQ=2CM,则称Q为点P关于正方形的仿射点如图为点P关于正方形的仿射点Q的示意图.
特别地,当点P与中心C重合时,规定CP=0.
(1)当正方形的中心为原点O,边长为2时.
①分别判断点F(2,0),G(,),H(3,3)关于该正方形的仿射点是否存在?若存在,直接写出其仿射点的坐标;
②若点P在直线y=﹣x+3上,且点P关于该正方形的仿射点Q存在,求点P的横坐标的取值范围;
(2)若正方形的中心C在x轴上,边长为2,直线y=与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于该正方形的仿射点Q在正方形的内部,直接写出正方形的中心C的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a,b,c满足=|c﹣17|+b2﹣30b+225,
(1)求a,b,c的值;
(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com