精英家教网 > 初中数学 > 题目详情
如图,∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C和D,证明:PC=PD.
分析:过点P点作PE⊥OA于E,PF⊥OB于F,根据垂直的定义得到∠PEC=∠PFD=90°,由OM是∠AOB的平分线,根据角平分线的性质得到PE=PF,利用四边形内角和定理可得到∠PCE+∠PDO=360°-90°-90°=180°,而∠PDO+∠PDF=180°,则∠PCE=∠PDF,然后根据“AAS”可判断△PCE≌△PDF,根据全等的性质即可得到PC=PD.
解答:证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,
∴∠PEC=∠PFD=90°,
∵OM是∠AOB的平分线,
∴PE=PF,
∵∠AOB=90°,∠CPD=90°,
∴∠PCE+∠PDO=360°-90°-90°=180°,
而∠PDO+∠PDF=180°,
∴∠PCE=∠PDF,
在△PCE和△PDF中
∠PCE=∠PDF
∠PEC=∠PFD
PE=PF

∴△PCE≌△PDF(AAS),
∴PC=PD.
点评:本题考查了角平分线的性质:角平分线上的点到这个角两边的距离相等.也考查了三角形全等的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,∠AOB=90°,将三角尺的直角顶点落在∠AOB的平分线OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F.
(1)证明:PE=PF;
(2)若OP=10,试探索四边形PEOF的面积为定值,并求出这个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作过C、O、D三点的⊙E,与OP相交于F;连接CF、DF.
(2)在所画图中,△CDF是什么形状?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泉州)如图,∠AOB=90°,∠BOC=30°,则∠AOC=
60
60
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接CF、DF.
(2)在所画图中,求证:△CDF为等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,∠AOB=90°,∠AOC为锐角,且ON平分∠AOC,射线OM在∠BON内部.
(1)请你数一数,图中共有多少个小于平角的角.
(2)如果∠AOC=50°,∠MON=45°.
①求∠AOM的度数;
②请通过计算说明OM是否平分∠BOC.
(3)如果∠AOC=x°,∠MON=45°,OM是否平分∠BOC?请说明理由.

查看答案和解析>>

同步练习册答案