精英家教网 > 初中数学 > 题目详情
18.如图,△ABC中,AB、AC的垂直平分线分别交BC于D、E,已知△ADE的周长为12cm,∠BAC=110°,求BC的长及∠DAE的度数.

分析 (1)由AB、AC的垂直平分线分别交BC于D、E,垂足分别是M、N,根据线段垂直平分线的性质,可得AD=BD,AE=EC,继而可得△ADE的周长等于BC的长;
(2)由∠BAC=110゜,可求得∠B+∠C的度数,又由AD=BD,AE=EC,即可求得∠BAD+∠CAE的度数,继而求得答案.

解答 解:(1)∵AB、AC的垂直平分线分别交BC于D、E,垂足分别是M、N,
∴AD=BD,AE=CE,
∵△ADE的周长是12,
∴AD+DE+AE=BD+DE+CE=BC=12,
即BC=12;

(2)∵∠BAC=110゜,
∴∠B+∠C=180°-∠BAC=70°,
∵AD=BD,AE=CE,
∴∠BAD=∠B,∠CAE=∠C,
∴∠BAD+∠CAE=70°,
∴∠DAE=∠BAC-(∠BAD+∠CAE)=110°-70°=40°.

点评 此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.如图,△ABC所在的平面上,满足△BCP与△ABC全等的点P共有9个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,点O是边长为2的正方形ABCD的对称中心,过点O作OM⊥ON,分别交正方形边于M、N、G、H,则当OM、ON绕点O旋转时,图中的阴影部分是否关于O点为中心对称?这两部分的面积是否改变?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.李老师家要买一辆小轿车,原价25万元,如果一次性付清车款,就可以享受九四折优惠.
(1)李老师打算一次性付清车款,他一次性付了多少元?
(2)买车子还要缴纳车辆购置税,计算方式为车辆购置税=$\frac{购车款}{1+17%}$×10%,如果李老师买这辆轿车一次性付清车款,那么他实际一共花了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.关于x的两个多项式乘积:(x+a)(x+b)的结果是(  )
A.x2-abB.x2+abC.x2+(a-b)x+abD.x2+(a+b)x+ab

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.△ABC中,AB=AC,点D在BC上,E在AB上,BD=DE,连接AD,点P,M,N分别是AD,BE,BC的中点,连接DM,AN.
(1)如图1,若∠BAC=90°,则∠PMN=45°;
(2)如图2,若∠BAC=60°,则∠PMN=60°;
(3)如图3,若∠BAC=α,则∠PMN=90°-$\frac{1}{2}α$,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列命题中的假命题是(  )
A.当a=b时,有a2=b2
B.经过已知直线外一点,有且只有一条直线与已知直线平行
C.互为相反数的两个数的和为0
D.相等的角是对顶角

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满;
①请你设计出所有的租车方案;
②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值:$\frac{x-2}{x-1}$÷(x+1-$\frac{3}{x-1}$),选一个合适的x的值代入计算.

查看答案和解析>>

同步练习册答案