精英家教网 > 初中数学 > 题目详情
8.我们定义:有一组对角相等而另一组对角不相等的四边形叫做“等对角四边形”
(1)已知:四边形ABCD是“等对角四边形”,∠A=70°,∠B=80°,求∠C、∠D的度数

(2)如图,在Rt△ACB中,∠C=90°,CD为斜边AB上的中线,过点D作DE⊥CD交AC于点E,求证:四边形BCED是“等对角四边形”.

分析 (1)根据“等对角四边形”的定义,当四边形ABCD是“等对角四边形”时,可分两种情况进行讨论:①若∠A=∠C,∠B≠∠D,则∠C=70°,再利用四边形内角和定理求出∠D;②若∠B=∠D,∠A≠∠C,则∠D=80°,再利用四边形内角和定理求出∠C;
(2)根据直角三角形斜边上的中线等于斜边的一半得出AD=DB=DC,由等边对等角得出∠DCB=∠B,再由∠B+∠ACD=∠DCB+∠ACD=90°,∠CED+∠ACD=90°,利用同角的余角相等得出∠CED=∠B,又∠ECB≠∠EDB,根据“等对角四边形”的定义,即可证明四边形BCED是“等对角四边形”.

解答 (1)解:①若∠A=∠C,∠B≠∠D,
则∠C=70°,∠D=360°-70°-70°-80°=140°;
②若∠B=∠D,∠A≠∠C,
则∠D=80°,∠C=360°-80°-80°-70°=130°;

(2)证明:在Rt△ABC中,
∵CD为斜边AB边上的中线,
∴AD=DB=DC,
∴∠DCB=∠B,
∵∠ACB=90°,
∴∠DCB+∠ACD=90°,
∴∠B+∠ACD=90°.
∵DE⊥CD,
∴∠CED+∠ACD=90°,
∴∠CED=∠B,
且∠ECB≠∠EDB,
∴四边形BCED是“等对角四边形”.

点评 本题主要考查了四边形内角和定理,直角三角形、等腰三角形的性质,余角的性质,理解“等对角四边形”的定义并且利用分类讨论思想是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离s (km)与甲车行驶的时间t(h)之间的函数关系如图所示.
(1)请分别求出甲、乙两车离开A城的距离s (km)与甲车行驶的时间t(h)之间的函数表达式;
(2)当甲乙两车都在行驶过程中时,甲车出发多长时间,两车相距50千米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、M两点之间和B、O两点之间上运动时(点P与点A、B、O三点不重合),请你分别直接写出∠CPD、∠α、∠β间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).
(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;
(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;
(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,将一张长方形纸条折叠,则∠1=64度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交AB于点E,交AC于点G,交BC的延长线于点F,连接AF、DE,下列结论:①△AEF≌△DEF②CF=AF-CD③DE∥AC④△AEG为等边三角形,其中正确结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,正方形ABCD的对角线交于点O,∠ACD的平分线交BD、AD于点E、F,若正方形的边长为1,则AF=2-$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.将七年级两个班男生掷实心球的成绩进行整理,并绘制出频数分布表、扇形统计图和频数分布直方图(不完整).(x表示成绩,且规定x≥6.25为合格,x≥9.25为优秀)
组别成绩(米)频数
A5.25≤x<6.255
B6.25≤x<7.2510
C7.25≤x<8.25a
D8.25≤x<9.2515
E9.25≤x<10.25b

(1)频数分布表中,a=15,b=5,其中成绩合格的有45人,请补全频数分布直方图;
(2)扇形统计图中E组对应的圆心角是36°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某正方形的两个顶点,且该正方形的边均与某条坐标轴平行(含重合),则称P,Q互为“正方形点”(即点P是点Q的“正方形点”,点Q也是点P的“正方形点”).下图是点P,Q互为“正方形点”的示意图.
(1)已知点A的坐标是(2,3),下列坐标中,与点A互为“正方形点”的坐标是①③.(填序号)
①(1,2);②(-1,5);③(3,2).
(2)若点B(1,2)的“正方形点”C在y轴上,求直线BC的表达式;
(3)点D的坐标为(-1,0),点M的坐标为(2,m),点N是线段OD上一动点(含端点),若点M,N互为“正方形点”,求m的取值范围.

查看答案和解析>>

同步练习册答案