阅读下面的材料:
如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.求证:AP·AC+BP·BD=AB2.
证明:连结AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90o,
∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.
由割线定理得: AP·AC=AM·AB,BP·BD=BM·BA,
所以,AP·AC+BP·BD=AM·AB+BM·AB=AB·(AM+BM)=AB2.
当点P在半圆周上时,也有AP·AC+BP·BD=AP2+BP2=AB2成立,那么:
(1)如图(2)当点P在半圆周外时,结论AP·AC+BP·BD=AB2是否成立?为什么?
(2
)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.科目:初中数学 来源: 题型:阅读理解
查看答案和解析>>
科目:初中数学 来源:山东省中考真题 题型:解答题
查看答案和解析>>
科目:初中数学 来源:第3章《圆》中考题集(51):3.5 直线和圆的位置关系(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:第5章《中心对称图形(二)》中考题集(44):5.5 直线与圆的位置关系(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:第24章《圆》中考题集(44):24.2 点、直线和圆的位置关系(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com