精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+4ax+4a-1的图象是C1
(1)求C1关于点R(1,0)中心对称的图象C2的函数解析式;
(2)在(1)的条件下,设抛物线C1、C2与y轴的交点分别为A、B,当AB=18时,求a的值.
分析:(1)因为C1和C2关于点R(1,0)中心对称,所以它们的顶点也中心对称.先求出y=ax2+4ax+4a-1的顶点坐标,再根据中心对称的定义求出C2的顶点坐标,便可进一步求出C2的函数解析式;
(2)把x=0代入解析式即可得到A、B点的纵坐标,将纵坐标相减,其差的绝对值即为18,可列出等式求出a的值.
解答:解:(1)由y=a(x+2)2-1,可知抛物线C1的顶点为M(-2,-1).
由图知点M(-2,-1)关于点R(1,0)中心对称的点为N(4,1),
以N(4,1)为顶点,与抛物线C1关于点R(1,0)中心对称的图象C2也是抛物线,精英家教网
且C1与C2的开口大小相同且方向相反,
故抛物线C2的函数解析式为y=-a(x-4)2+1,
即y=-ax2+8ax-16a+1.(3分)

(2)令x=0,
得抛物线C1、C2与y轴的交点A、B的纵坐标分别为4a-1和-16a+1.
∴AB=|(4a-1)-(-16a+1)|=|20a-2|.
∴|20a-2|=18.
a≥
1
10
时,有20a-2=18,得a=1;
当a<
1
10
时,有2-20a=18,得a=-
4
5
.(7分)
点评:此题将中心对称的问题与二次函数解析式相结合,同时考查了二次函数图象的性质以及坐标轴上点的距离公式,特别是(2)还涉及到分类讨论思想,是一道好题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案