精英家教网 > 初中数学 > 题目详情
如图,⊙O1和⊙O2外切于点P,内公切线PC与外公切线AB(A、B分别是⊙O1和⊙O2上的切点)相交于点C,已知⊙O1和⊙O2的半径分别为3和4,则PC的长等于______.
连接AO1、BO2,作O1D⊥O2B于D,
在Rt△O1O2D中,O1O2=7,O2D=1,
根据勾股定理得O1D=4
3
,则AB=4
3

根据切线长定理得:PC=AC=BC,
所以AB=2PC,即PC=
1
2
AB=2
3

故答案为:2
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,⊙O1和⊙O2内切于点A,⊙O2的弦BC切⊙O1于D.AD的延长线交⊙O2于M,连接AB、AC分别交⊙O1于E、F,连接EF.
(1)求证:EFBC;
(2)求证:AB•AC=AD•AM;
(3)若⊙O1的半径r1=3,⊙O2的半径r2=8,BC是⊙O2的直径,求AB和AC的长(AB>AC).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )
A.OCAEB.EC=BCC.∠DAE=∠ABED.AC⊥OE

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰△ABC中,AB=AC=13,BC=10,以AC为直径作⊙O交BC于点D,交AB于点G,过点D作⊙O的切线交AB于点E,交AC的延长线与点F.
(1)求证:EF⊥AB;
(2)求cos∠F的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在⊙O的外切四边形ABCD中,AB=5,BC=4,CD=3,则S△AOB:S△BOC:S△COD:S△DOA=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求
BC
的长.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为点E.
(1)求证:直线DE与⊙O相切;
(2)当AB=9,BC=6时,求线段DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心,5为半径的⊙O与OA、OB相交.
求证:AB是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是(  )
A.DE=DOB.AB=ACC.CD=DBD.ACOD

查看答案和解析>>

同步练习册答案