精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC的面积为12,D是AB边的中点,E是AC边上一点,且AE=2EC,O是DC与BE的交点,S△DBO=a,S△CEO=b,则a-b=
 
分析:D是AB边的中点,所以S△CBD=
1
2
S△ABC;又AE=2EC,故S△CBE=
1
3
S△ABC;然后根据S△OBC=S△CBD-a=6-a,S△OBC=S△CBE-b=4-b来求解即可.
解答:解:∵D是AB边的中点,△ABC的面积为12,
∴S△CBD=
1
2
S△ABC=6;
又∵AE=2EC,
∴S△CBE=
1
3
S△ABC=4;
∵S△DBO=a,S△CEO=b,
∴S△OBC=S△CBD-a=6-a,
S△OBC=S△CBE-b=4-b.
∴6-a=4-b,即a-b=2.
点评:解答这类题目时,只要找准了图形的间的底边和底边之间的关系,高和高之间的关系,再根据面积公式来计算就不难理解其中的规律了.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积是63,D是BC上的一点,且BD:CD=2:1,DE∥AC交AB于E,延长DE到F,使FE:ED=2:1,则△CDF的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为
 
,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去….利用这一图形,能直观地计算出
3
4
+
3
42
+
3
43
+…+
3
4n
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的面积为
2
,且AB=AC,将△ABC沿CA方向平移CA长度得到△EFA.
(1)试判断四边形BAEF的形状,并说明理由;
(2)若∠BEC=22.5°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,△ABC的面积为1,若把△ABC的各边分别延长一倍,得到一个新的△DEF,则S△DEF=
7

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连结A2,B2,C2,得到△A2B2C2.…按此规律,要使得到的三角形的面积超过2013,最少经过
4
4
次操作.

查看答案和解析>>

同步练习册答案