精英家教网 > 初中数学 > 题目详情
如图,点A、O、B在同一条直线上.
(1)∠AOC比∠BOC大100°,求∠AOC与∠BOC的度数;
(2)在(1)的条件下,若∠BOC与∠BOD互余,求∠BOD的度数;
(3)在(2)的条件下,若OE平分∠AOC,求∠DOE的度数.
分析:(1)由点A、O、B在同一条直线上得∠AOC+∠BOC=180°,因为∠AOC比∠BOC大100°,所以用∠BOC+100°表示∠AOC从而求出∠BOC,进而求出∠AOC;
(2)由∠BOC与∠BOD互余,所以∠BOD=90°-∠BOC,从而求得∠BOD的度数;
(3)由(2)得∠COD=90°,OE平分∠AOC,得∠COE=
1
2
∠AOC,从而求得∠DOE的度数.
解答:解:(1)∵∠AOC比∠BOC大100°,
∴∠AOC=∠BOC+100°,
又点A、O、B在同一条直线上.
∴∠AOC+∠BOC=180°,
∴∠BOC+100°+∠BOC=180°,
∴∠BOC=40°,
∠AOC=140°;
(2)∵∠BOC与∠BOD互余,
∴∠BOD+∠BOC=90°,
∴∠BOD=90°-∠BOC=90°-40°=50°;
(3)∵OE平分∠AOC,
∴得∠COE=
1
2
∠AOC=70°,
∵∠BOD+∠BOC=90°,
∴∠DOE=∠COE+∠COD=∠COE+∠BOD+∠BOC
=70°+90°
=160°.
点评:此题考查的知识点是余角和补角及角平分线的性质,关键熟记定义准确运算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点A,O,B在同一直线上,射线OD平分∠AOC,射线OE平分∠BOC.
(1)若∠COE=60°,求∠COD及∠BOD的度数;
(2)你能发现射线OD,OE有什么位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B、C在⊙O上,AO∥BC,∠OBC=40°,则∠ACB的度数是
20°
20°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.
求证:BC=ED.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山)如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.
求证:FP=EP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通二模)如图,点A是双曲线y=
4
x
在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为
y=-
4
x
y=-
4
x

查看答案和解析>>

同步练习册答案