已知直线y=x+6交x轴于点A,交y轴于点C,经过A和原点O的抛物线y=ax2+bx(a<0)的顶点B在直线AC上.
(1)求抛物线的函数关系式;
(2)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并说明理由;
(3)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA︰∠AEO=2︰3,若存在,试求出点M的坐标;若不存在,试说明理由.
(1)该抛物线的函数关系式为y=﹣x2﹣2x;
(2)相切,理由见解析;
(3)存在这样的点M ,M的坐标为(﹣6+,﹣1+2)或(﹣6﹣,﹣1﹣2).
解析试题分析:(1)根据过A、C两点的直线的解析式即可求出A,C的坐标,根据A,O的坐标即可得出抛物线的对称轴的解析式,然后将A点坐标代入抛物线中,联立上述两式即可求出抛物线的解析式.
(2)直线与圆的位置关系无非是相切与否,可连接AD,证AD是否与AC垂直即可.由于B,D关于x轴对称,那么可得出∠CAO=∠DAO=45°,因此可求出∠DAB=90°,即DA⊥AC,因此AC与圆D相切.
(3)根据圆周角定理可得出∠AEO=45°,那么∠MOA=30°,即M点的纵坐标的绝对值和横坐标的绝对值的比为tan30°,由此可得出x,y的比例关系式,然后联立抛物线的解析式即可求出M点的坐标.(要注意的是本题要分点M在x轴上方还是下方两种情况进行求解).
试题解析:(1)根据题意知:A(﹣6,0),C(0,6)
∵抛物线y=ax2+bx(a<0)经过A(﹣6,0),0(0,0).
∴对称轴x==﹣3,b=6a…①
当x=﹣3时,代入y=x+6得y=﹣3+6=3,
∴B点坐标为(﹣3,3).
∵点B在抛物线y=ax2+bx上,
∴3=9a﹣3b…②
结合①②解得a=﹣,b=﹣2,
∴该抛物线的函数关系式为y=﹣x2﹣2x;
(2)相切
理由:连接AD,
∵AO=OC
∴∠ACO=∠CAO=45°
∵⊙B与⊙D关于x轴对称
∴∠BAO=∠DAO=45°
∴∠BAD=90°
又∵AD是⊙D的半径,
∴AC与⊙D相切.
∵抛物线的函数关系式为y=﹣x2﹣2x,
∴函数顶点坐标为(﹣3,3),
由于D、B关于x轴对称,
则BD=3×2=6;
(3)存在这样的点M.
设M点的坐标为(x,y)
∵∠AEO=∠ACO=45°
而∠MOA:∠AEO=2:3
∴∠MOA=30°
当点M在x轴上方时,=tan30°=,
∴y=﹣x.
∵点M在抛物线y=﹣x2﹣2x上,
∴﹣x=﹣x2﹣2x,
解得x=﹣6+,x=0(不合题意,舍去)
∴M(﹣6+,﹣1+2).
当点M在x轴下方时,=tan30°=,
∴y=x,
∵点M在抛物线y=﹣x2﹣2x上.
∴x=﹣x2﹣2x,
解得x=﹣6﹣,x=0(不合题意,舍去).
∴M(﹣6﹣,﹣1﹣2),
∴M的坐标为(﹣6+,﹣1+2)或(﹣6﹣,﹣1﹣2).
.
考点:二次函数综合题.
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价每上涨1元.则每个月少卖10件。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1) 求y与x的函数关系式
(2) 每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3) 若每个月的利润不低于2160元,售价应在什么范围?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动:点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(),那么:
(1)设△POQ的面积为,求关于的函数解析式。
(2)当△POQ的面积最大时,△ POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。
⑴求这个二次函数的表达式;
⑵连结PO、PC,在同一平面内把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
⑶当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求此抛物线的解析式;
(2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某跳水运动员进行10m跳台跳水的训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为己知条件).在跳某个规定动作时,正确情况下,该运动员在空中的最高处距水面m,入水处与池边的距离为4m, 同时,运动员在距水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
(l)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为,问:此次跳水会不会失误?通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数的图象经过点(4,3),(3,0).
(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象;
(3)该函数的图像经过怎样的平移得到的图像?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com