精英家教网 > 初中数学 > 题目详情
如图(1),在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴负半轴上,∠AOC=60°,OA=4
精英家教网
(1)点C的坐标为
 

(2)如图(2),将△ACB绕点C按顺时针方向旋转30°,得到△A′CB′的位置,其中A′C交直线OA于E,则直线CE的解析式为
 

(3)设A′B′交直线OA、CA于点M、N,则四边形MNCE的面积为
 
平方单位.
分析:(1)首先在Rt△ACO中,根据∠AOC=60°解直角三角形可以得到OA,OC的长,然后就可以得到点C的坐标;
(2)可证△COE为等边三角形,过E点作x轴的垂线,垂足为F,解直角三角形求E点坐标,可求直线CE的解析式;
(3)由CE=CO=2,A′C=AC=2
3
,得到A′E=AN=2
3
-2,解Rt△AMN,求AM,MN,用S四边形MNCE=S△AOC-S△COE-S△AMN,求解.
解答:解:(1)∵在Rt△ACO中,∠CAO=30°,OA=4,
∴OC=2,
∴C点的坐标为(-2,0);

(2)由旋转的性质可知∠ECO=90°-∠ACA′=60°,
又∵∠AOC=60°,
∴△COE为等边三角形,过E点作x轴的垂线,垂足为F,
精英家教网
在Rt△OEF中,
∵∠AOC=60°,
∴OF=FC=1,EF=
3

将C(-2,0),E(-1,
3
)代入直线CE:y=kx+b中得
-2k+b=0
-k+b=
3

解得
k=
3
b=2
3

∴直线CE:y=
3
x+2
3


(3)∵CE=CO=2,A′C=AC=2
3

∴A′E=AN=2
3
-2,
在Rt△AMN中,MN=
1
2
AN=
3
-1,AM=
3
MN=3-
3

∴S四边形MNCE=S△AOC-S△COE-S△AMN
=
1
2
×2×2
3
-
1
2
×2×
3
-
1
2
×(
3
-1)×(3-
3

=3-
3
点评:本题主要考查了一次函数的综合,此题是开放性试题,把直角三角形、全等三角形,一次函数等知识综合在一起,要求学生对这些知识比较熟练,利用几何方法解决代数问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

暑假期间,北关中学对网球场进行了翻修,在水平地面点A处新增一网球发射器向空中发射网球,网球飞行线路是一条抛物线(如图所示),在地面上落点为B.有同学在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内,已知AB=4m,AC=3m,网球飞行最大高度OM=5m,圆柱形桶的直径为0.5m,高为0.3m(网球精英家教网的体积和圆柱形桶的厚度忽略不计),以M点为顶点,抛物线对称轴为y轴,水平地面为x轴建立平面直角坐标系.
(1)请求出抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•武汉模拟)要修建一个圆形喷水池,在池中心竖直安装一根2.25m的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m.
(1)建立适当的平面直角坐标系,使水管顶端的坐标为(0,2.25),水柱的最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不要求写取值范围);
(2)如图,在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相邻轨道之间的宽度为0.3m,最内轨道的半径为rm,其上每0.3m的弧长上安装一个地漏,其它轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏.求当r为多少时池中安装的地漏的个数最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

一个多面体的面数(a)和这个多面体表面展开后得到的平面图形的顶点数(b),棱数(c)之间存在一定规律,如图1是正三棱柱的表面展开图,它原有5个面,展开后有10个顶点(重合的顶点只算一个),14条棱.

【探索发现】
(1)请在图2中用实线画出立方体的一种表面展开图;
(2)请根据图2你所画的图和图3的四棱锥表面展开图填写下表:
多面体 面数a 展开图的顶点数b 展开图的棱数c
直三棱柱 5 10 14
四棱锥
5
5
8 12
立方体
6
6
14
14
19
19
(3)发现:多面体的面数(a)、表面展开图的顶点数(b)、棱数(c)之间存在的关系式是
a+b-c=1
a+b-c=1

【解决问题】
(4)已知一个多面体表面展开图有17条棱,且展开图的顶点数比原多面体的面数多2,则这个多面体的面数是多少?

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 华师大八年级版 2009-2010学年 第13期 总第169期 华师大版 题型:044

工具阅读:

在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系.通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点.

问题探究:如图1,在6×6的方格纸中,给出如下三种变换:P变换,Q变换,R变换.

将图形F沿x轴向右平移1格得图形F1,称为作1次P变换;

将图形F沿y轴翻折得图形F2,称为作1次Q变换;

将图形F绕坐标原点顺时针旋转90°得图形F3,称为作1次R变换.

规定:PQ变换表示先作1次Q变换,再作1次P变换;QP变换表示先作1次P变换,再作1次Q变换;Rn变换表示作n次R变换.

解答下列问题:

(1)作R4变换相当于至少作________次Q变换;

(2)请在图2中画出图形F作R2011变换后得到的图形F4

(3)PQ变换与QP变换是否是相同的变换?请在图3中画出PQ变换后得到的图形F5,在图4中画出QP变换后得到的图形F6

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆市南开中学九年级(上)第一次月考数学试卷(解析版) 题型:解答题

暑假期间,北关中学对网球场进行了翻修,在水平地面点A处新增一网球发射器向空中发射网球,网球飞行线路是一条抛物线(如图所示),在地面上落点为B.有同学在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内,已知AB=4m,AC=3m,网球飞行最大高度OM=5m,圆柱形桶的直径为0.5m,高为0.3m(网球的体积和圆柱形桶的厚度忽略不计),以M点为顶点,抛物线对称轴为y轴,水平地面为x轴建立平面直角坐标系.
(1)请求出抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

查看答案和解析>>

同步练习册答案