【题目】如图,在中,,点在边上,于点.
若,,求的长;
设点在线段上,点在射线上,以,,为顶点的三角形与有一个锐角相等,交于点.问:线段可能是的高线还是中线?或两者都有可能?请说明理由.
【答案】(1)6;(2)见解析
【解析】
(1)根据已知条件易证DE∥BC,再由平行线分线段成比例定理列比例式即可求解;(2)分三种情况讨论:①若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线;②若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线;③当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.
解:∵,,
∴,
∴,
∵,,
∴;
①如图,若,此时线段是的边上的中线.
证明:∵,,
又∵,
∴,
∴,
∵,
∴,
∴,
∴线段是的边上的中线;
②如图,若,此时线段为的边上的高线.
证明:∵,
∴,
∵,
∴,
∴,
∴线段为的边上的高线.
③如图,当为的平分线时,既是的边上的高线又是中线.
科目:初中数学 来源: 题型:
【题目】我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:
例:将化为分数形式
由于=0.777…,设x=0.777…①
则10x=7.777…②
②﹣①得9x=7,解得x=,于是得=.
同理可得=,=1+=1+,
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
(基础训练)
(1)= ,= ;
(2)将化为分数形式,写出推导过程;
(能力提升)
(3)= ,= ;
(注:=0.315315…,=2.01818…)
(探索发现)
(4)①试比较与1的大小: 1(填“>”、“<”或“=”)
②若已知=,则= .
(注:=0.285714285714…)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:
若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.
例如:点P1(1,1),点P2(2,3),因为|1﹣2|<|1﹣3|,所以点P1与点P2的“非常距离”为|1﹣3|=2,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).
(1)已知点A(-,0),B为y轴上的一个动点.
①若点B(0,3),则点A与点B的“非常距离”为______;
②若点A与点B的“非常距离”为2,则点B的坐标为_______;
③直接写出点A与点B的“非常距离”的最小值为_______;
(2)已知点D(0,1),点C是直线y=﹣x+3上的一个动点,如图2,求点C与点D“非常距离”的最小值及相应的点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:四边形ABCD的对角线AC,BD相交于点O,给出下列4个条件:①AB∥CD;②OA=OC;③AB=CD;④AD∥BC.从中任取两个条件,能推出四边形ABCD是平行四边形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.
(1)求证:BC是⊙O的切线;
(2)若sin∠EFA=,AF=,求线段AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料,回答问题:
解方程,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设,那么,于是原方程可变为①,解得,.
当时,,∴;
当时,,∴;
∴原方程有四个根:,,,.
在由原方程得到方程①的过程中,利用________法达到________的目的,体现了数学的转化思想.
解方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com