精英家教网 > 初中数学 > 题目详情
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(1)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2
思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.
请你完成证明过程:
(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.

【答案】分析:(1)将△ACM沿直线CE对折,得△DCM,连DN,证明△CDN≌△CBN,再利用勾股定理求出即可;
(2)将△ACM沿直线CE对折,得△GCM,连GN,证明△CGN≌△CBN,进而利用勾股定理求出即可.
解答:(1)证明:
将△ACM沿直线CE对折,得△DCM,连DN,
则△DCM≌△ACM.
有CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A.
又由CA=CB,得 CD=CB.  
由∠DCN=∠ECF-∠DCM=45°-∠DCM,
∠BCN=∠ACB-∠ECF-∠ACM=90°-45°-∠ACM,
得∠DCN=∠BCN. 
又CN=CN,
∴△CDN≌△CBN.    
∴DN=BN,∠CDN=∠B.
∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.
∴在Rt△MDN中,由勾股定理,
得MN2=DM2+DN2.即MN2=AM2+BN2. 

(2)关系式MN2=AM2+BN2仍然成立.  
证明:
将△ACM沿直线CE对折,得△GCM,连GN,
则△GCM≌△ACM. 
有CG=CA,GM=AM,
∠GCM=∠ACM,∠CGM=∠CAM.
又由CA=CB,得 CG=CB.
由∠GCN=∠GCM+∠ECF=∠GCM+45°,
∠BCN=∠ACB-∠ACN=90°-(∠ECF-∠ACM)=45°+∠ACM.
得∠GCN=∠BCN.   
又CN=CN,
∴△CGN≌△CBN.
有GN=BN,∠CGN=∠B=45°,∠CGM=∠CAM=180°-∠CAB=135°,
∴∠MGN=∠CGM-∠CGN=135°-45°=90°.
∴在Rt△MGN中,由勾股定理,
得MN2=GM2+GN2.即MN2=AM2+BN2
点评:此题主要考查了勾股定理以及全等三角形的证明,根据已知作出正确的辅助线是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是(  )
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延长线于E,BA、CE延长线相交于F点.
求证:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,两直角边AC、BC的长是关于x的方程x2-(m+5)x+6m=0的两个实数根.求m的值及AC、BC的长(BC>AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是
72
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.

查看答案和解析>>

同步练习册答案