精英家教网 > 初中数学 > 题目详情

【题目】1)问题发现:如图1均为等边三角形,点ADE在同一直线上,连接BE

填空:①的度数为

②线段ADBE之间的数量关系为

2)拓展探究:如图2均为等腰直角三角形,,点ADE在同一直线上,CMDE边上的高,连接BE,求的度数,并说明理由.

【答案】1)①;②相等;(2,理由见解析

【解析】

1)①由条件易证ACD≌△BCE,从而得到:AD=BE,∠ADC=BEC.由点ADE在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.②由△ACD≌△BCE,可得出答案.

2)仿照(1)中的解法可求出∠AEB的度数.

解:(1)①∵∠ACB=DCE,∠DCB=DCB

∴∠ACD=BCE

ACDBCE中,

AC=BC

ACD=BCE,,

∴△ACD≌△BCE

AD=BE

②相等理由:

∵△ACD≌△BCE

AD=BE

故答案为:相等.

2理由:如图2

均为等腰直角三角形,

CA=CBCD=CE,∠ACB=DCE=90°

∴∠ACD=BCE

在在ACDBCE中,

∴△ACD≌△BCESAS),

AD=BE,∠ADC=BEC

∵△DCE为等腰直角三角形,

∴∠CDE=CED=45°

∵点ADE在同一直线上,

∴∠ADC=135°

∴∠BEC=135°

∴∠AEB=BEC-CED=90°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为(  )

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现场学习:在ABC中,AB、BC、AC三边的长分别为,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.

(1)ABC的面积为: _________ 

(2)若DEF三边的长分别为,请在图1的正方形网格中画出相应的DEF,并利用构图法求出它的面积;

(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且PQR、BCR、DEQ、AFP的面积相等,求六边形花坛ABCDEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,E为边上一点,连结AE并延长交直线DC于F,且CE=CF.

(1)如图1,求证:AF是∠BAD的平分线;

(2)如图2,若∠ABC=90°,点G是线段EF上一点,连接DG、BD、CG,若∠BDG=45°,求证:CG=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面各问题中给出的两个变量xy,其中yx的函数的是

x是正方形的边长,y是这个正方形的面积;

x是矩形的一边长,y是这个矩形的周长;

x是一个正数,y是这个正数的平方根;

x是一个正数,y是这个正数的算术平方根.

A. ①②③B. ①②④C. ②④D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题用适当的方法解下列方程

(1)(3x﹣1)(4x+5)=0

(2)4x2﹣8x﹣3=0(配方法)

(3)x(x+1)=3x+6

(4)(x﹣2)(x+4)=16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是半径为cmO外一点,PAPB分别和O切于点ABPA=PB=3cmAPB=60°C是弧AB上一点,过CO的切线交PAPB于点DE

1)求PDE的周长;

2)若DE=cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中, 他俩的成绩分别如下表,请根据表中数据解答下列问题:

第 1 次

第 2 次

第 3 次

第 4 次

第 5 次

平均分

众数

中位数

方差

60 分

75 分

100 分

90 分

75 分

80 分

75 分

75 分

190

70 分

90 分

100 分

80 分

80 分

80 分

80 分

(1)把表格补充完整:

(2)在这五次测试中,成绩比较稳定的同学是多少;若将 80 分以上(含 80 分) 的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;

(3)历届比赛表明,成绩达到80分以上(含 80分)就很可能获奖,成绩达到 90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.

查看答案和解析>>

同步练习册答案