精英家教网 > 初中数学 > 题目详情

【题目】“龟、蟹赛跑趣事:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑500米。当螃蟹领先乌龟300米时,螃蟹停下来休息并睡着了,当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计)并立即以原来的速度继续跑向终点,并赢得了比赛。在比赛的整个过程中,乌龟和螃蟹的距离(米)与乌龟出发的时间(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离是______________米。

【答案】75

【解析】

根据速度=路程÷时间结合函数图象即可算出乌龟的速度,再根据出发25分钟后螃蟹的路程-乌龟的路程=300”即可求出螃蟹的速度,进而即可求出螃蟹、乌龟会合地离起点的时间,结合总路程及二者的速度即可得出结论.

解:由图形可知:乌龟125分钟到达终点,

∴乌龟的速度为:500÷125=4(米/秒),

设螃蟹的速度为v/秒,

25v-25×4=300

v=16

故螃蟹的速度为16/秒,

300÷4=75(分),

75+25=100

∴点P1000),

螃蟹惊醒后到达终点的时间为:(500-25×16÷16=6.25分钟,

则螃蟹到达终点时,乌龟距终点的距离为:125-100-6.25=75(米).

故答案为:75

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB90°,AC8cmBC6cm.点PA点出发沿ACB路径以每秒1cm的运动速度向终点B运动;同时点QB点出发沿BCA路径以每秒vcm的速度向终点A运动.分别过PQPEABEQFABF

1)设运动时间为t秒,当t   时,直线BP平分△ABC的面积.

2)当QBC边上运动时(t0),且v1时,连接AQ、连接BP,线段AQBP可能相等吗?若能,求出t的值;若不能,请说明理由.

3)当Q的速度v为多少时,存在某一时刻(或时间段)可以使得△PAE与△QBF全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,CBCD,∠D+ABC180°,CEADE

1)求证:AC平分∠DAB

2)若AE3ED6,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,在四边形ABCD中,ABCD,点EBC的中点,若AE是∠BAD的平分线,试判断ABADDC之间的等量关系.

解决此问题可以用如下方法:延长AEDC的延长线于点F,易证△AEB≌△FEC得到AB=FC,从而把ABADDC转化在一个三角形中即可判断.ABADDC之间的等量关系______.

(2)同题探究.

①如图②,AD是△ABC的中线,AB=6AC=4,求AD的范围:

②如图③,在四边形ABCD中,ABCDAFDC的延长线交于点F,点EBC的中点,若AE是∠BAF的平分线,试探究ABAFCF之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形纸片放入以所在直线为轴,边上一点为坐标原点的平面直角坐标系中,连结。将纸片沿折叠,点恰好落在边上点处,若,则点的坐标为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴、轴分别交于点,直线轴、轴分别交于点的解析式为的解析式为,两直线的交点

1)求直线的解析式;

2)求四边形的面积;

3)当时,直接写出的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象经过点A(﹣3,6),并与x轴交于点B(﹣1,0)和点C,与y轴交于点E,顶点为P,对称轴与x轴交于点D

Ⅰ)求这个二次函数的解析式;

Ⅱ)连接CP,DCP是什么特殊形状的三角形?并加以说明;

Ⅲ)点Q是第一象限的抛物线上一点,且满足∠QEO=BEO,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点O是等边三角形ABC内一点,AOB=110°BOC=α, OC为边作等边三角形OCD,连接AD.

1α=150°时,试判断AOD的形状,并说明理由;

2探究:当a为多少度时,AOD是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=16cmBC=6cm,点P从点A出发沿AB向点B移动(不与点AB重合),一直到达点B为止;同时,点Q从点C出发沿CD向点D移动(不与点CD重合).运动时间设为t秒.

1)若点PQ均以3cm/s的速度移动,则:AP=  cmQC=  cm.(用含t的代数式表示)

2)若点P3cm/s的速度移动,点Q2cm/s的速度移动,经过多长时间PD=PQ,使△DPQ为等腰三角形?

3)若点PQ均以3cm/s的速度移动,经过多长时间,四边形BPDQ为菱形?

查看答案和解析>>

同步练习册答案