精英家教网 > 初中数学 > 题目详情
10.在500个数据中,用适当的方法抽取50个为样本进行统计,频率分布表中54.5~57.5这一组的频率是0.15,那么估计总体数据在54.5~57.5之间的数据约有75个.

分析 利用样本中54.5~57.5这一组的频率是0.15,估计总体中54.5~57.的频率大约是0.15,据此解答即可得.

解答 解:∵在抽取的样本中,54.5~57.5这一组的频率是0.15,
∴估计总体数据在54.5~57.5之间的数据约有500×0.15=75,
故答案为:75.

点评 本题主要考查样本估计总体,掌握用样本估计总体的基本思想是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,在?ABCD中,AD=2AB,F是AD的中点,作CE⊥AB于E,在线段
AB上,连接EF、CF.则下列结论:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正确的是(  )
A.②④B.①②④C.①②③④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是B(请选择正确的一个)
A.a2-2ab+b2=(a-b)2
B.a2-b2=(a+b)(a-b)
C.a2+ab=a(a+b)
(2)若x2-9y2=12,x+3y=4,求x-3y的值;
(3)计算:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{{2016}^{2}}$)(1-$\frac{1}{{2017}^{2}}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?
(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=35度.(直接写出结果)
(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先化简,再求值:
($\frac{1}{x+y}$-$\frac{1}{x-y}$)÷$\frac{2y}{{x}^{2}-2xy{+y}^{2}}$,其中x=$\sqrt{3}$+$\sqrt{2}$,y=$\sqrt{3}$-$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.某电器专卖店策划五一促销活动,已知一款电视机的成本价为1800元/台,专卖店计划将其打七五折销售,同时还要保证每台至少获得10%的利润.若设该款电视机的标价为x元/台,则x满足的不等关系为0.75x-1800≥1800×10%.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简($\frac{{x}^{2}-6x}{x+2}$+2)÷$\frac{{x}^{2}-4}{{x}^{2}+4x+4}$,然后从2、-2、1、-1中选取一个你认为合适的数作为x的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.a,b,c为△ABC的三边,化简|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|,结果是(  )
A.0B.2a+2b+2cC.4aD.2b-2c

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知,Rt△ABC中,∠BAC=90°,点D是直线AC上的动点,过点D作BC⊥DE交直线BC于点F,连接EC,且EC=ED,DC=2AB,将线段DE绕点E旋转90°得到线段GE,连结BG.
(1)如图1,当点D在线段AC上时,证明:四边形BCEG为菱形:
(2)如图2.当点D在线段AC的延长线上时,(1)的结论:四边形BCEG为菱形是否依然成立,若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案