精英家教网 > 初中数学 > 题目详情
15、请在由边长为1的小正三角形组成的虚线网格中,画一个所有顶点均在格点上,且至少有一条边为无理数的等腰三角形.
见下图
分析:题目要求等腰三角形的至少一边为无理数,则说明等腰三角形的至少一边不与网格线重合,可据此来作等腰三角形.
解答:解:本题答案不惟一,下列画法供参考:
点评:本题考查等腰三角形及无理数的概念,开放性较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在由24个边长都为1的小正三角形组成的网格中,点P是正六边形的一个顶点,以点P为顶点作格点直角三角形(即顶点均在格点上的三角形),请你画出所有斜边不同的可能的直角三角形,并写出所有可能的直角三角形斜边的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在由24个边长都为1的小正三角形的网格中,点P是正六边形的一个顶点,Q在网格中的格点(即小正三角形的顶点)上,若以点P,Q为端点的线段的长为无理数,请你写出所有可能的线段PQ的长
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在由24个边长都为1的小正三角形组成的正六边形网格中,以格点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y轴的负半轴和x轴的正半轴上.抛物线y=ax2+bx+c经过点A,B和点D(4,
143

(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2厘米/秒的速度向点B移动,同时点Q由B点开始沿BC边以1厘米/秒的速度向点C移动.若P、Q中有一点到达终点,则另一点也停止运动,设P、Q两点移动的时间为t秒,S=PQ2(厘米2)写出S与t之间的函数关系式,并写出t的取值范围,当t为何值时,S最小;
(3)当s取最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
(4)在抛物线的对称轴上求出点M,使得M到D,A距离之差最大?写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=
5
6
x2+bx+c经过点A、B.
(1)求抛物线的表达式.
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC以1cm/s的速度向点C移动,当其中一点到达终点时,另一点也随之停止运动.
①移动开始后,是否存在某一时刻t,使得以O、A、P为顶点的三角形与△BPQ相似,若存在,请求出此时t的值,若不存在,请说明理由.
②移动开始后第t秒时,设S=PQ2(cm2),当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)若此抛物线上有一点D(3,
1
2
),在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

查看答案和解析>>

同步练习册答案