精英家教网 > 初中数学 > 题目详情

【题目】为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:

初二1班体育模拟测试成绩分析表

平均分

方差

中位数

众数

男生

2

8

7

女生

7.92

1.99

8

根据以上信息,解答下列问题:

(1)这个班共有男生________人,共有女生________人;

(2)补全初二1班体育模拟测试成绩分析表.

【答案】 20 25

【解析】试题分析:(1)由条形图可得男生总人数,总人数减去男生人数可得女生人数;

2)根据平均数和众数定义可得.

试题解析:解:(1)这个班共有男生1+2+6+3+5+3=20人,共有女生45﹣20=25人,故答案为:2025

2)甲的平均分为×5+6×2+7×6+8×3+9×5+10×3=7.9,女生的众数为8,补全表格如下:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型

汽车运载量(吨/辆)

5

8

10

汽车运费(元/辆)

400

500

600

(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?

(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成不合格合格优秀三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示.试结合图示信息回答下列问题:

(1)这32名学生培训前考分的中位数所在的等级是 ,培训后考分的中位数所在的等级是

(2)这32名学生经过培训,考分等级不合格 的百分比由 下降到

(3)估计该校整个八年级中,培训后考分等级为合格优秀的学生共有 名.

(4)你认为上述估计合理吗:理由是什么?

答: ,理由:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【探索新知】:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOBAOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB巧分线

1)一个角的平分线   这个角的巧分线;(填不是

2)如图2,若∠MPN=α,且射线PQ是∠MPN巧分线,则∠MPQ=   ;(用含α的代数式表示出所有可能的结果)

【深入研究】:如图2,若∠MPN=60°,且射线PQ绕点PPN位置开始,以每秒10°的速度逆时针旋转,当PQPN180°时停止旋转,旋转的时间为t秒.

3)当t为何值时,射线PM是∠QPN巧分线

4)若射线PM同时绕点P以每秒的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN巧分线t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:课外兴趣小组活动时,老师提出了如下问题:

如图1ABC中,若AB=5AC=3,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长ADE,使得DE=AD,再连接BE(或将ACD绕点D逆时针旋转180°得到EBD),把ABAC2AD集中在ABE中,利用三角形的三边关系可得2AE8,则1AD4

感悟:解题时,条件中若出现中点”“中线字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.

1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC中,DBC边上的中点,DEDFDEAB于点EDFAC于点F,连接EF

①求证:BE+CFEF②若∠A=90°,探索线段BECFEF之间的等量关系,并加以证明;

2)问题拓展:如图3,在平行四边形ABCD中,AD=2ABFAD的中点,作CEAB,垂足E在线段AB上,联结EFCF,那么下列结论①∠DCF=BCDEF=CFSBEC=2SCEF④∠DFE=3AEF.中一定成立是 (填序号).

图1 图2 图3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:(3﹣π)0 +|3﹣ |+(tan30°)1
(2)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算. 比如:2⊕5=2×(2﹣5)+1
=2×(﹣3)+1
=﹣6+1
=﹣5
若3⊕x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.

探究1:如图l,在ABC中,O是∠ABC与∠ACB的平分线BOCO的交点,通过分析发现∠BOC=90+A,理由如下:

BOCO分别是∠ABC和∠ACB的角平分线

∴∠1=ABC, 2=ACB

∴∠l+2=(ABC+ACB)= (180-A)= 90-A

∴∠BOC=180-(1+2) =180-(90-A)=90+A

(1)探究2;如图2中,OABC与外角ACD的平分线BOCO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.

(2)探究3:如图3中, O是外角∠DBC与外角∠ECB的平分线BOCO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)

(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BOCO的交点,则∠BOC与∠A+D有怎样的关系?(直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】养成良好的早锻炼习惯,对学生的学习和生活非常有益某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间分钟进行了调查现把调查结果分为ABCD四组,如下表所示;同时,将调查结果绘制成下面两幅不完整的统计图.

组别

早锻炼时间

A

B

C

D

请根据以上提供的信息,解答下列问题:

扇形统计图中D所在扇形的圆心角度数为______

补全频数分布直方图;

已知该校七年级共有1200名学生,请你估计这个年级学生中有多少人一天早锻炼的时间不少于20分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列等式:①由a=b,得52a=52b②由a=b,得ac=bc③由a=b,得④由,得3a=2b

⑤由a2=b2,得a=b.其中正确的是_____

查看答案和解析>>

同步练习册答案