精英家教网 > 初中数学 > 题目详情
4.计算:2-1-tan60°+($\sqrt{5}$-1)0-|2-$\sqrt{3}}$|.

分析 直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质、负指数幂的性质分别化简求出答案.

解答 解:2-1-tan60°+($\sqrt{5}$-1)0-|2-$\sqrt{3}}$|
=$\frac{1}{2}$-$\sqrt{3}$+1-(2-$\sqrt{3}$)
=-$\frac{1}{2}$.

点评 此题主要考查了实数运算,正确化简各数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为P,BP:PA=1:3,CD=2$\sqrt{3}$.
(1)求⊙O的半径;
(2)以CD为边作正方形CDEF,以C为圆心,CF的长为半径画弧交CB的延长线于点M,CB的延长线交DE于点N.
①求阴影部分的面积;
②连接OD,请猜想四边形OBND的形状,并证明你的猜想;
③若正方形CDEF绕着点O旋转一周,求边EF扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某市为增加绿化面积,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共750棵对某段道路进行绿化改造,已知甲种树苗每棵80元,乙种树苗每棵160元,若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.完成推理填空
如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=∠5,延长AB、GF交于点M,那么∠AMG=∠3吗?说明你的理由.
解:
延长CD,与MG相交于点N.
∵∠1=∠2(已知)
∴AM∥CN(内错角相等,两直线平行)
∴∠AMG=∠CNG.(两直线平行,同位角相等)
∵∠4=∠5(已知)
∴MG∥DE.
∴∠CNG=∠3.
∴∠AMG=∠3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.将两个等腰Rt△ADE,Rt△ABC(其中∠DAE=∠ABC=90°,AB=BC,AD=AE)如图放置在一起,点E在AB上,AC与DE交于点H,连接BH、CE,且∠BCE=15°,下列结论:
①AC垂直平分DE;
②CDE为等边三角形;
③tan∠BCD=$\frac{AB}{BE}$;
④$\frac{{S}_{△EBC}}{{S}_{△EHC}}$=$\frac{\sqrt{3}}{3}$
正确的结论是(  )
A.只有①②B.只有③④C.只有①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,某教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面夹角是45°时,教学楼顶部A在地面上的影子F与墙角C的距离为18m(B、F、C在同一直线上).求教学楼AB的高;(结果保留整数)(参考数据:sim22°≈0.37,cos22°≈0.93,tan22°≈0.40)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.小明有两双不同颜色的拖鞋放在床前,拖鞋分左右脚.他半夜起床抹黑穿拖鞋,则他左右脚穿对同颜色鞋子的概率是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y=$\frac{k}{x}$的图象恰好经过斜边A′B的中点C,S△ABO=16,tan∠BAO=2,则k的值为(  )
A.20B.22C.24D.26

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.小明在投篮训练中作了大量的统计,得到自己投中的概率为0.6,则小明在一次训练中投了50次,他投中的次数在30次左右.

查看答案和解析>>

同步练习册答案