精英家教网 > 初中数学 > 题目详情
9.如图(1),在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.
(1)请写出点C的坐标为(0,2),点D的坐标为(4,2),S四边形ABDC8;
(2)点Q在y轴上,且S△QAB=S四边形ABDC,求出点Q的坐标;
(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.

分析 (1)根据平移直接得到点C,D坐标,用面积公式计算;
(2)设出Q的坐标,OQ=|m|,用S△QAB=S四边形ABDC建立方程,解方程即可;
(3)作出辅助线,平行线,用两直线平行,内错角相等,即可.

解答 解:(1)∵线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,
且(-1,0),B(3,0),
∴C(0,2),D(4,2);
∵AB=4,OC=2,
∴S四边形ABDC=AB×OC=8;
故答案为:(0,2);(4,2);8;

(2)∵点Q在y轴上,设Q(0,m),
∴OQ=|m|,
∴S△QAB=$\frac{1}{2}$×AB×OQ=$\frac{1}{2}$×4×|m|=2|m|,
∵S四边形ABDC=8,
∴2|m|=8,
∴m=4或m=-4,
∴Q(0,4)或Q(0,-4).

(3)如图,

∵线段CD是线段AB平移得到,
∴CD∥AB,
作PE∥AB,
∴CD∥PE,
∴∠CPE=∠DCP,
∵PE∥AB,
∴∠OPE=∠BOP,
∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,
∴∠CPO=∠DCP+∠BOP.

点评 此题是四边形综合题,主要考查了平移得性质,计算三角形面积的方法,平行线的判定和性质,解本题的关键用面积建立方程或计算,作出辅助线是解本题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.已知a,b,c,d为有理数,现规定一种新的运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,那么当$|\begin{array}{l}{2}&{4}\\{(1-x)}&{5x}\end{array}|$=18时,则x的值是(  )
A.x=1B.$x=\frac{7}{11}$C.$x=\frac{11}{7}$D.x=-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若2x-y=$\frac{1}{3}$,xy=2,则2x4y3-x3y4=$\frac{8}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.计算:(-3)2÷(-3)×$\frac{1}{3}$=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,已知线段AB的两个端点坐标分别为A(a,1),B(-2,b),且满足$\sqrt{a+5}$+$\sqrt{b-3}$=0.
(1)则a=-5,b=3;
(2)在y轴上是否存在点C,使三角形ABC的面积等于8?若存在,请求出点C的坐标;若不存在,请说明理由;
(3)如图2,将线段BA平移得到线段OD,其中B点对应O点,A点对应D点,点P(m,n)是线段OD上任意一点,求证:3n-2m=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,平行四边形ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在△ABC中,∠C=90°,点E在AB上,以AE为直径的⊙O与BC相切于点D,连接AD.
(1)求证:AD平分∠BAC;
(2)若⊙O的直径为10,sin∠DAC=$\frac{{\sqrt{5}}}{5}$,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在△ABC中,AB=AC.
(1)尺规作图:作AB的垂直平分线,交AC于点M,(不写作法,保留作图痕迹);
(2)若∠A=40°,求∠CMB的度数.

查看答案和解析>>

同步练习册答案