精英家教网 > 初中数学 > 题目详情

已知:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
求证:①△ADC≌△CEB;②DE=AD-BE.

证明:①∵∠ACB=90°,BE⊥CE,AD⊥CE,
∴∠BEC=∠ACB=∠ADC=90°,
∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,
在△ADC和△CEB中

∴△ADC≌△CEB(AAS).

②∵△ADC≌△CEB,
∴AD=CE,BE=CD,
∴CE-CD=AD-BE,
∵DE=CE-CD,
∴DE=AD-BE.
分析:①根据垂直定义求出∠BEC=∠ACB=∠ADC,根据等式性质求出∠ACD=∠CBE,根据AAS证出△ADC和△CEB全等即可;
②由①推出AD=CE,CD=BE,即可推出答案.
点评:本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明△ADC和△CEB全等的三个条件.题型较好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案