精英家教网 > 初中数学 > 题目详情

【题目】将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶

点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),

则三角板的最大边的长为( )

A. B. C. D.

【答案】D

【解析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.

解答:解:过点C作CDAD,CD=3,
在直角三角形ADC中,
∵∠CAD=30°,
AC=2CD=2×3=6,
又三角板是有45°角的三角板,
AB=AC=6,
BC2=AB2+AC2=62+62=72,
BC=

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】由若干边长为1的小正方形拼成一系列“L”形图案(如图1).

(1)当“L”形由7个正方形组成时,其周长为
(2)如图2,过格点D作直线EF,分别交AB,AC于点E,F.
①试说明AEAF=AE+AF;
②若“L”形由n个正方形组成时,EF将“L”形分割开,直线上方的面积为整个“L”形面积的一半,试求n的取值范围以及此时线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以BC为底边的等腰△ABC,点DEG分别在BCABAC上,且EGBCDEAC,延长GE至点F,使得BE=BF

1)求证:四边形BDEF为平行四边形;

2)当∠C=45°,BD=2时,求DF两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1经过过点P(2,2),分别交x轴、y轴于点A(4,0),B。

(1)求直线l1的解析式;

(2)点Cx轴负半轴上一点,过点C的直线l2交线段AB于点D

如图1,当点D恰与点P重合时,点Qt,0)为x轴上一动点,过点QQMx轴,分别交直线l1l2于点MN。若MN=2MQ,求t的值;

如图2,若BC=CD,试判断mn之间的数量关系并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,求水管AB的长;

(2)如图2,在△ABC中,D是BC边上的点,已知AB=13,AD=12,AC=15,BD=5,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.
(1)求证:OM=AN;
(2)若⊙O的半径R=3,PA=9,求OM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是等边三角形,DBC边上的一个动点(点D不与BC重合)△ADF是以AD为边的等边三角形,过点FBC的平行线交射线AC于点E,连接BF

1)如图1,求证:△AFB≌△ADC

2)请判断图1中四边形BCEF的形状,并说明理由;

3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.

(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知函数的图象与反比例函数的图象的一个交点为A,则= ________

(2)如果满足,试求代数式的值.

(3)已知,求的值.

查看答案和解析>>

同步练习册答案