科目:初中数学 来源: 题型:
如图,平行四边形ABCD中,M,N分别是AB,CD的中点,将四边形MBCN沿直线MN折叠后得到四边形MB′C′N,MB′与DN交于点P.若∠A=64°,则∠MPN= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
定义:如果一个与的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是与的“反比例平移函数”.
例如:的图象向左平移2个单位,再向下平移1个单位得到的图象,则是与的“反比例平移函数”.
(1)若矩形的两边分别是2、3,当这两边分别增加()、()后,得到的新矩形的面积为8,求与的函数表达式,并判断这个函数是否为“反比例平移函数”.
(2)如图,在平面直角坐标系中,点为原点,矩形的顶点、的坐标分别为(9,0)、(0,3) .点是的中点,连接、交于点,“反比例平移函数”的图象经过、两点.则这个“反比例平移函数”的表达式为 ;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式 .
(3)在(2)的条件下, 已知过线段中点的一条直线交这个“反
比例平移函数”图象于、两点(在的右侧),若、、
、为顶点组成的四边形面积为16,请求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
某校甲、乙给贫困地区捐款购买图书,每班捐款总数均为1200元,已知甲班比乙班多8人,乙班人均
捐款是甲班人均捐款的倍,求:甲、乙两班各有多少名学生。
查看答案和解析>>
科目:初中数学 来源: 题型:
四边形是正方形,是等腰直角三角形,,,连接,为
的中点,连接,,。
(1)如图24-1,若点在边的延长线上,直接写出与的位置关系及的值;
(2)将图24-1中的绕点顺时针旋转至图24-2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)将图24-1中的绕点顺时针旋转(),若,,当,,三
点共线时,求的长及的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
在矩形ABCD中,AB=2,BC=6,点E为对角线AC的中点,点P在边BC上,连接PE、PA.当点P在BC上运动时,设BP=x,△APE的周长为y,下列图象中,能表示y与x的函数关系的图象大致是
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:在平面直角坐标系xOy中,给出如下定义:线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).
(1)如图1,已知C点的坐标为(1,0),D点的坐标为(3,0),求点P(2,1)到线段CD的距离d(P→CD)为 ;
(2)已知:线段EF:y=x(0≤x≤3),点G到线段EF的距离d(P→EF)为,且点G的横坐标为1,在图2中画出图,试求点G的纵坐标.
图1 图2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com