精英家教网 > 初中数学 > 题目详情

如图,在四边形ABCD中,AC、BD相交于点O,E、F是AD、BC的中点,EF分别交AC、BD于M、N,且OM=ON.
求证:AC=BD.

证明:
取AB和CD的中点分别为G、H,连接EG、GF、FH、EH,
则EH∥AC,EH=AC,HF∥BD,FH=BD,
∴∠3=∠2,∠1=∠4,
∵OM=ON,
∴∠1=∠2,
∴∠4=∠3=∠1=∠2,
同理∠EFH=∠GFE=∠1=∠2,
∴∠4=∠EFH,
∴EH=HF,
∵EH=AC,FH=BD,
∴AC=BD.
分析:取AB和CD的中点分别为G、H,连接EG、GF、FH、EH,推出EH∥AC,EH=AC,HF∥BD,FH=BD,根据平行线性质求出∠3=∠2,∠1=∠4,根据OM=ON推出∠4=∠3=∠1=∠2,同理∠EFH=∠GFE=∠1=∠2,推出∠4=∠EFH,得出EH=HF即可.
点评:本题考查了等腰三角形的性质和判定,三角形的中位线,平行线的性质等知识点,关键是正确作辅助线后得出EH=HF,题目比较典型,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案