精英家教网 > 初中数学 > 题目详情

【题目】晨光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.

(1)若平行于墙的一边长为y米,直接写出yx的函数关系式及其自变量x的取值范围;

(2)设这个苗圃园的面积为S,求Sx之间的函数关系.

【答案】(1)y302x,(6≤x<15);(2S=﹣2x7.52+112.5

【解析】

(1)由总长度垂直于墙的两边的长度=平行于墙的这边的长度,根据墙的长度就可以求出的取值范围;

(2)由长方形的面积公式建立二次函数即可.

解:(1y302x,(6≤x<15);

2)设矩形苗圃的面积为S

Sxyx302x)=﹣2x7.52+112.5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,广场上一个立体雕塑由两部分组成,底座是一个正方体,正上方是一个球体,且正方体的高度和球的高度相等.当阳光与地面的夹角成60°时,整个雕塑在地面上的影子AB长2米,求这个雕塑的高度.(结果精确到百分位,参考数据:≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC△A1B1C1是位似图形.在网格上建立平面直角坐标系,使得点A的坐标为(1,﹣6).

(1)在图上标出点,△ABC△A1B1C1的位似中心P.并写出点P的坐标为   

(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2△ABC位似,且位似比为1:2,并写出点C2的坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+4分别交x轴、y轴于点A、B,抛物线过y=ax2+bx+c经过A,B两点,点P是线段AB上一动点,过点PPCx轴于点C,交抛物线于点D.

(1)若抛物线的解析式为y=﹣x2+x+4,设其顶点为M,其对称轴交AB于点N.

①求点M、N的坐标;

②是否存在点P,使四边形MNPD为菱形?并说明理由;

(2)当点P的横坐标为2时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形是直角三角形?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数 yx﹣3 与反比例函数 y的图象相交于点 A(4,n),与 x 轴相交于点 B

(1)求 n k 的值;

(2)以 AB 为边作菱形 ABCD,使点 C x 轴正半轴上,点 D 在第一象限,求点 D 的坐标;

(3)观察反比例函数y=的图象,当 y>﹣2 时,请直接写出自变量 x 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc(a≠0),该函数y与自变量x的部分对应值如下表:

x

1

2

3

y

0

1

0

(1)求该二次函数的表达式;

(2)不等式ax2bxc0的解集为

不等式ax2bxc3的解集为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(m,6),B(n,1)在反比例函数y=的图象上,ADx轴于点D,BCx轴于点C,点ECD上,CD=5,ABE的面积为10,则点E的坐标是(  )

A. (3,0) B. (4,0) C. (5,0) D. (6,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+(m﹣1)x+my轴交点坐标是(0,3).

(1)求出m的值;

(2)求抛物线与x轴的交点;

(3)当x取什么值时,y<0?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)已知二次函数

(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;

(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.

查看答案和解析>>

同步练习册答案