精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在 10×6 的正方形网格中,每个小正方形的边长均为 1,线段 AB 的端点 AB 均在小正方形的顶点上.

1)在图中画出以 AB 为一腰的等腰ABC,点 C 在小正方形顶点上,ABC 为钝角三角形,且ABC 的面积为

2)在图中画出以 AB 为斜边的直角三角形 ABD D在小正方形的顶点上,且 AD>BD

3)连接 CD,请你直接写出线段 CD 的长.

【答案】1)如图所示见解析;(2)如图所示见解析;(3

【解析】

1)根据AB的长和三角形的面积即可求出点C所在的直线,然后根据AB=BC即可找出点C

2)以AB为直径作圆,从圆与小正方形的顶点的交点中找出满足AD>BD的点D即可;

3)根据勾股定理计算即可.

解:(1)由图可知:AB=5

ABC 的面积为

CAB的距离为×2÷5=3

∴点C在与AB平行且相距3的直线上,以点B为圆心,AB的长为半径作弧,交该直线与点C,连接ACBC,如图所示△ABC即为所求;

2)以AB为直径作圆,从圆与小正方形的顶点的交点中找出满足AD>BD的点D即可,如图所示,△ABD即为所求;

3)根据勾股定理

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在方格纸中,每个方格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图甲中,每个小正方形的边长为1,以线段AB为一边的格点三角形随着第三个顶点的位置不同而发生变化.

1)根据图甲,填写下表,并计算出格点三角形面积的平均值;

格点三角形面积

1

2

3

4

频数

2)在图乙中,所给的方格纸大小与图甲一样,如果以线段CD为一边,作格点三角形,试填写下表,并计算出格点三角形面积的平均值;

格点三角形面积

1

2

3

4

频数

3)如果将图乙中格点三角形面积记为s,频数记为x,根据你所填写的数据,猜测sx之间存在哪种函数关系,并求出函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿ABBC向点C运动,到达点C停止,设APQ的面积为ycm2),运动时间为xs),则下列最能反映yx之间函数关系的图象是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A在抛物线yx22x+2上运动.过点AACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的图象如图所示:

(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为  

(2)判断△ABC的形状,并说明理由.

(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,抛物线 y=ax2 -2ax+4(a<0) x 轴于点 AB,与 y 轴交于点 CAB=6

1)如图 1,求抛物线的解析式;

2 如图 2,点 R 为第一象限的抛物线上一点,分别连接 RBRC,设RBC 的面积为 s,点 R 的横坐标为 t,求 s t 的函数关系式;

3)在(2)的条件下,如图 3,点 D x 轴的负半轴上,点 F y 轴的正半轴上,点 E OB 上一点,点 P 为第一象限内一点,连接 PDEFPD OC 于点 GDG=EFPDEF,连接 PE,∠PEF=2PDE,连接 PBPC,过点R RTOB 于点 T,交 PC 于点 S,若点 P BT 的垂直平分线上,OB-TS=,求点 R 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+3x轴、y轴分别交于点BC;抛物线y=﹣x2+bx+c经过BC两点,并与x轴交于另一点A

1)求该抛物线所对应的函数关系式;

2)设Pxy)是(1)所得抛物线上的一个动点,过点P作直线l⊥x轴于点M,交直线BC于点N

若点P在第一象限内.试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;

求以BC为底边的等腰△BPC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙O,直径DEAB于点F,交BC于点 MDE的延长线与AC的延长线交于点N,连接AM

1)求证:AMBM

2)若AMBMDE8,∠N15°,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,P是底边上的一个动点(PBC不重合),以P为圆心,为半径的与射线交于点D,射线交射线于点E

1)若点E在线段的延长线上,设y关于x的函数关系式,并写出x的取值范围.

2)连接,若,求的长.

查看答案和解析>>

同步练习册答案