精英家教网 > 初中数学 > 题目详情

如图.已知AB是⊙O的直径.C是⊙O上一点,直线CE与AB的延长线相交于点E,AD⊥CE于点D,AD交⊙O于点F.AC平分∠DAE.
(1)求证:CE是⊙O的切线.
(2)若DC+DF=6.⊙O的直径为10,求AF的长.

(1)证明:连接OC,
∵AC平分∠DAB,
∴∠DAC=∠CAO,
∵OA=OC,
∴∠OCA=∠CAO,
∴∠DAC=∠OCA,
∴OC∥AD,
∵AD⊥DE,
∴OC⊥DE,
∵OC为半径,
CE是⊙O的切线;

(2)解:设DC=x.则DF=6-x,过O作OH⊥AD于H,
∵AD⊥DE,OC⊥DE,
∴∠OHD=∠D=∠OCD=90°,
∴四边形OHDC是矩形,
∴DH=OC=5,FH=5-(6-x)=x-1,
∵OH⊥AF,
∴AH=FH=x-1,
在Rt△AOH中,AO2=AH2+HO2
∴52=(x-1)2+x2
x=4,x=-3(不符合题意舍去),
∴AF=2FH=2(4-1)=6.
分析:(1)求出∠DAC=∠CAO,∠OCA=∠CAO,推出∠DAC=∠OCA,得出OC∥AD,求出OC⊥DE,根据切线的判定推出即可;
(2))设DC=x.则DF=6-x,过O作OH⊥AD于H,得出四边形OHDC是矩形,推出DH=OC=5,FH=x-1,求出AH=FH=x-1,在Rt△AOH中,根据勾股定理得出52=(x-1)2+x2,求出x=4,代入AF=2FH求出即可.
点评:本题考查了垂径定理,勾股定理,切线的性质和判定,平行线的性质和判定,等腰三角形的性质和判定的应用,主要考查学生综合运用性质进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案