精英家教网 > 初中数学 > 题目详情
1.如图所示,已知等腰△ABC,AB=AC.
(1)作∠BAC的平分线AD,交BC于点D,延长AD至点E,使得DE=AD;(尺规作图,不要求写出作法和证明,保留作图痕迹)
(2)连接BE,CE,判断四边形ABEC的形状是菱形.(直接写出答案)

分析 (1)直接利用角平分线的作法得出E点位置进而得出答案;
(2)利用菱形的判定方法得出答案.

解答 解:(1)如图所示:AD,DE为所求;    


(2)∵AB=AC,AD平分∠CAB,
∴CD=BD,AD⊥BC,
∵AD=DE,
∴四边形ABEC是菱形,
故答案为:菱形.

点评 此题主要考查了菱形的判定以及复杂作图,正确把握菱形的判定方法是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.按如下程序进行计算:

规定:程序运行到“结果是否≥55”为一次运算.
(1)若x=8,则输出结果是64;
(2)若程序一次运算就输出结果,求x的最小值;
(3)若程序运算三次才停止,则可输入的整数x是哪些?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C,O,A都不重合),过点A,C分别向直线BM作垂线段,垂足分别为E,F,连接OE,OF.
(1)①依据题意补全图形;
②猜想OE与OF的数量关系为OE=OF.
(2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.
小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:
想法1:由已知条件和菱形对角线互相平分,可以构造与△OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;
想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组△OAB和△EAB,再依据直角三角形斜边中线的性质,菱形四边 相等,可以构造一对以OE和OF为对应边的全等三角形,即可证明猜想.

请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).
(3)当∠ADC=120°时,请直接写出线段CF,AE,EF之间的数量关系是EF=$\sqrt{3}$(CF+AE).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)化简4y2-(x2+y)+(x2-4y2
(2)求值$\frac{1}{4}$(-4x2+2x-8)-3($\frac{1}{2}$x-2),其中x=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:($\sqrt{24}$+$\sqrt{18}$)÷$\sqrt{2}$+(2-$\sqrt{3}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系xOy中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(4,4),反比例函数y=$\frac{k}{x}$(x>0,k≠0)的图象经过线段BC的中点D,交正方形OABC的另一边AB于点E.
(1)求k的值;
(2)如图①,若点P是x轴上的动点,连接PE,PD,DE,当△DEP的周长最短时,求点P的坐标;
(3)如图②,若点Q(x,y)在该反比例函数的图象上运动(不与点D重合),过点Q作OM⊥y轴,垂足为M,作QN⊥BC所在直线,垂足为N,记四边形CMQN的面积为S,求S关于x的函数表达式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.△ABC中,点D在边AB上,点E在边AC上,联结DE,DE是△ABC的一条中位线,点G是△ABC的重心,设$\overrightarrow{AG}$=$\overrightarrow{a}$,$\overrightarrow{AB}$=$\overrightarrow{b}$,则$\overrightarrow{DE}$=$\frac{3}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$(用含$\overrightarrow{a}$,$\overrightarrow{b}$的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程:$\frac{3}{x-1}$-$\frac{x}{x-1}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,矩形ABCD中,AB=4,BC=6,E是BC上一点(不与B、C重合),点P在边CD上运动,M、N分别是AE、PE的中点,线段MN长度的最大值是$\sqrt{13}$.

查看答案和解析>>

同步练习册答案