抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点
(1)求抛物线的解析式;
(2)求抛物线与x轴的交点坐标,与y轴交点坐标;
(3)画出这条抛物线;
(4)根据图象回答:①当x取什么值时,y>0,y<0?②当x取什么值时,y的值随x的增大而减小?
考点:
抛物线与x轴的交点;二次函数的图象;待定系数法求二次函数解析式..
专题:
计算题.
分析:
(1)将(0,3)代入y=﹣x2+(m﹣1)x+m求得m,即可得出抛物线的解析式;
(2)令y=0,求得与x轴的交点坐标;令x=0,求得与y轴的交点坐标;
(3)得出对称轴,顶点坐标,画出图象即可;
(4)当y>0时,即图象在一、二象限内的部分;当y<0时,即图象在一、二象限内的部分;在对称轴的右侧,y的值随x的增大而减小.
解答:
解:(1)∵抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点,
∴m=3,
∴抛物线的解析式为y=﹣x2+2x+3;
(2)令y=0,得x2﹣2x﹣3=0,
解得x=﹣1或3,
∴抛物线与x轴的交点坐标(﹣1,0),(3,0);
令x=0,得y=3,
∴抛物线与y轴的交点坐标(0,3);
(3)对称轴为x=1,顶点坐标(1,4),图象如图,
(4)如图,①当﹣1<x<3时,y>0;
当x<﹣1或x>3时,y<0;
②当x>1时,y的值随x的增大而减小.
点评:
本题考查了抛物线与x轴的交点问题、用待定系数法求二次函数的解析式以及二次函数的图象,是基础知识要熟练掌握.
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求直线AC的解析式及B、D两点的坐标;
(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com