精英家教网 > 初中数学 > 题目详情
若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是(     )
 
A.二次函数图像与x轴交点有两个
B.x≥2时y随x的增大而增大
C.二次函数图像与x轴交点横坐标一个在-1~0之间,另一个在2~3之间
D.对称轴为直线x=1.5
D

试题分析:根据题目提供的满足二次函数解析式的x、y的值,确定二次函数的对称轴,利用对称轴找到一个点的对称点的纵坐标即可.
解:由上表可知函数图象经过点和点,
∴a=1,b=-2,
对称轴为
故答案为:D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.

(1) 求b,c的值。
(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.
(3) 如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线 轴交于两点A,B,且,求k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)已知二次函数y=ax2+bx+c(a≠0)的图象过A(2,0)、B(12,0),且y的最大值为50,求这个二次函数的解析式;
(2)抛物线顶点P(2,1),且过A(-1,10),求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针方向旋转1350,得到矩形EFGH(点E与O重合).

(1)若GH交y轴于点M,则∠FOM=      ,OM=        
(2)矩形EFGH沿y轴向上平移t个单位.
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFHG与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤时,S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个. 设销售价为x元/个.
(1)该文具店这种签字笔平均每周的销售量为           个(用含x的式子表示);
(2)求该文具店这种签字笔平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式;
(3)当x取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,已知抛物线经过点A(0,3),B(3,0),C(4,3).

(1)求抛物线的函数表达式;
(2)求抛物线的顶点坐标和对称轴;
(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)

30
40
50
60

销售量y(万个)

5
4
3
2

同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一段抛物线 轴交于点;将向右平移得第2段抛物线,交轴于点;再将向右平移得第3段抛物线,交轴于点;又将向右平移得第4段抛物线,交轴于点,若上,则的值是         

查看答案和解析>>

同步练习册答案