精英家教网 > 初中数学 > 题目详情
3.如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,AC=9.

分析 利用两组角对应相等,两三角形相似确定出△ABC∽△ADB,再根据相似三角形对应边成比例列式计算即可得解.

解答 解:∵∠ABD=∠C,∠BAC=∠DAB,
∴△ABC∽△ADB,
∴$\frac{AB}{AD}$=$\frac{AC}{AB}$,
即$\frac{6}{4}$=$\frac{AC}{6}$,
解得AC=9.
故答案为:9.

点评 本题考查了相似三角形的判定与性质,熟练掌握三角形相似的判定方法并确定出△ABC∽△ADB是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.已知A=a3-3a2+2a-1,B=2a3+2a2-4a-5,求a=-1时,A-4(B-$\frac{A+B}{2}$)的值是(  )
A.-19B.19C.38D.-38

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,反比例函数y1=$\frac{k}{x}$与一次函数y2=ax+b交于点(4,2)、(-2,-4)两点,则使得y1<y2的x的取值范围是(  )
A.-2<x<4B.x<-2或x>4C.-2<x<0或0<x<4D.-2<x<0或x>4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.数轴上表示数($\frac{a}{2}$+2)的点M与表示数($\frac{a}{3}$+3)的点N关于原点对称,则a的值为-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.指出下列各项中哪些是代数式,并说明原因.
①x3-3;②$\sqrt{\frac{3}{b}}$;③m-4=8;④2a-b>5;⑤$\sqrt{78}$;⑥73.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在平面直角坐标系中,点A(4,0),B为第一象限内一点,且△OAB为等边三角形,C为OB的中点,连接AC.
(1)如图①,求点C的坐标;
(2)如图②,将△OAC沿x轴向右平移得到△DFE,设OD=m,其中0<m<4.
①设△OAB与△DEF重叠部分的面积为S,用含m的式子表示S;
②连接BD,BE,当BD+BE取最小值时,求点E的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.数学问题:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、On-1,求∠BOn-1C的度数?

问题探究:我们从较为简单的情形入手.
探究一:如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线分别交于点O1,求∠BO1C的度数?
解:由题意可得∠O1BC=$\frac{1}{2}$∠ABC,∠O1CB=$\frac{1}{2}$∠ACB
∴∠O1BC+∠O1CB=$\frac{1}{2}$(∠ABC+∠ACB)=$\frac{1}{2}$(180°-α)
∴∠BO1C=180°-$\frac{1}{2}$(180°-α)=90°+$\frac{1}{2}$α.
探究二:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,求∠BO2C的度数.
解:由题意可得∠O2BC=$\frac{2}{3}$∠ABC,∠O2CB=$\frac{2}{3}$∠ACB
∴∠O2BC+∠O2CB=$\frac{2}{3}$(∠ABC+∠ACB)=$\frac{2}{3}$(180°-α)
∴∠BO2C=180°-$\frac{2}{3}$(180°-α)=60°+$\frac{2}{3}$α.
探究三:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,求∠BO3C的度数.
(仿照上述方法,写出探究过程)
问题解决:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、On-1,求∠BOn-1C的度数.
问题拓广:
如图2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分线交于点O1,两条角平分线构成一角∠BO1C.
得到∠BO1C=90°+$\frac{1}{2}$α.
探究四:如图3,∠A=α,∠ABC、∠ACB三等分线分别交于点O1、O2,四条等分线构成两个角∠BO1C,∠BO2C,则∠BO2C+∠BO1C=180°+α.
探究五:如图4,∠A=α,∠ABC、∠ACB四等分线分别交于点O1、O2、O3,六等分线构成两个角∠BO3C,∠BO2C,∠BO1C,则∠BO3C+∠BO2C+∠BO1C=270°+$\frac{3}{2}$α.
探究六:如图1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分线分别交于点O1、O2、…、On-1,(2n-2))等分线构成(n-1)个角∠BOn-1C…∠BO3C,∠BO2C,∠BO1C,则∠BOn-1C+…∠BO3C+∠BO2C+∠BO1C=(n-1)(90°+$\frac{1}{2}$α).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程:
(1)x2-2x-1=0;                
(2)7x(3-x)=4(x-3).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,点A为函数y=$\frac{9}{x}$(x>0)的图象上一点,连接OA,交函数y=$\frac{1}{x}$(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积是(  )
A.$\frac{9}{2}$B.9C.6D.3

查看答案和解析>>

同步练习册答案