精英家教网 > 初中数学 > 题目详情
精英家教网如图,点A(a,b)在双曲线y=
6
x
上,a>b>0,OA=
13
,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为(  )
A、4
7
B、5
C、2
7
D、
22
分析:根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组
ab=6
a2+b2=(
13
)2
,解之即可求出△ABC的周长.
解答:解:∵OA的垂直平分线交OC于B,
∴AB=OB,
∴△ABC的周长=OC+AC,
设OC=a,AC=b,
则有方程组
ab=6
a2+b2=(
13
)2

解得a+b=5,
即△ABC的周长=OC+AC=5.
故选B.
点评:本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点A、B在数轴上,它们所对应的数分别是-4、
2x+23x-1
,且点A、B关于原点O对称,求x的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A为⊙O直径CB延长线上一点,过点A作⊙O的切线AD,切点为D,过点D作DE⊥AC,垂足为F,连接精英家教网BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,试求CE的长.
(3)在(2)的条件下,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A的坐标为(2
2
,0
),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(  )
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B在线段MN上,则图中共有
 
条线段.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点O到直线l的距离为3,如果以点O为圆心的圆上只有两点到直线l的距离为1,则该圆的半径r的取值范围是
2<r<4

查看答案和解析>>

同步练习册答案