【题目】为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制成如下统计图表(单位:cm):
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根据图表提供的信息,样本中,身高在160≤x<170之间的女生人数为( )
A. 8 B. 6 C. 14 D. 16
科目:初中数学 来源: 题型:
【题目】将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,连接AB.
(1)如图,已知AC、BC分别是∠BAP和∠ABM角的平分线,
①点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
②如图,将△ABC沿直线AB折叠,若点C落在直线PQ上,记作点C′,则∠ABO= °;如图,将△ABC沿直线AB折叠,若点C落在直线MN上,记作点C′′,则∠ABO= °.
(2)如图,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD交于点O,OB平分∠DOE,OF是∠BOC的角平分线.
(1)说明:∠AOC=∠BOE;
(2)若∠AOC=46°,求∠EOF的度数;
(3)若∠EOF=30°,求∠AOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等边三角形,点D是BC上一点,点E在CA的延长线上,连结EB、ED,且EB=ED.
(1)求证:∠DEC=∠ABE;
(2)点D关于直线EC的对称点为M,连接EM、BM:
①依题意将图2补全;
②求证:EB=BM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD= ,以O为圆心,OC为半径作 ,交OB于E点.
(1)求⊙O的半径OA的长;
(2)计算阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某小区有一块长为米、宽为米的长方形地块该长方形地块。该长方形地块正中间是一个长为米的长方形,四个角是大小相同的正方形,该小区计划
将如图阴影部分进行绿化,对四个角的四个正方形采用A绿化方案,对正中间的长方形采用B绿化方案.
(1)采用A绿化方案的每个正方形边长是多少米,采用B绿化方案的长方形另一边长是多少米(用含的代数式表示);
(2)若采用A、B两种绿化方案的总造价相同,均为2700元,请你判断哪种方案单位面积造价高?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本.
(1)请利用分式方程求出每本笔记本的原来标价;
(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入本笔记本?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com