分析 (1)作CN⊥x轴于点N,根据HL证明Rt△CAN≌Rt△AOB,求出NO的长度,进而求出点C的坐标;
(2)设△ABC沿x轴的正方向平移c个单位,用c表示出C′和B′,根据两点都在反比例函数图象上,求出k的值,进而求出c的值,即可求出反比例函数的解析式.
解答 解:(1)作CN⊥x轴于点N,
∵A(-2,0)B(0,1).
∴OB=1,AO=2,
在Rt△CAN和Rt△AOB,
∵$\left\{\begin{array}{l}{CN=AO}\\{AC=AB}\end{array}\right.$,
∴Rt△CAN≌Rt△AOB(HL),
∴AN=BO=1,CN=AO=2,NO=NA+AO=3,
又∵点C在第二象限,
∴C(-3,2);
故答案为(-3,2);
(2)设△ABC沿x轴的正方向平移c个单位,
则C′(-3+c,2),则B′(c,1)
又点C′和B′在该比例函数图象上,
∴k=2(-3+c)=c,
即-6+2c=c,
解得c=6,
即反比例函数解析式为y=$\frac{6}{x}$.
点评 本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的知识,解决第(2)问关键求出c的值,此题难度不是很大.
科目:初中数学 来源: 题型:选择题
A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 面积为3的正方形的长 | B. | 长为3,宽为2的长方形的对角线长 | ||
C. | 体积为8的正方体的棱长 | D. | 对角线分别为2、4的菱形边长 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com