精英家教网 > 初中数学 > 题目详情
11.图(a)、图(b)是两张形状,大小完全相同的8×8的方格纸,方格纸中的每个小正方形的边长均为1,请在图(a)、图(b)中分别画出符合要求的图形,要求:所画图形各顶点必须与方格纸中的小正方形顶点重合.
(1)以AB为一边,画一个成中心对称的四边形ABCD,使其面积为12;
(2)以EF为一边,画△EFP,使其面积为$\frac{15}{2}$的轴对称图形.

分析 (1)根据平行四边形的底边为4,高为3,进行画图;
(2)根据等腰三角形的腰为5,腰上的高为3,进行画图.

解答 解:(1)如图所示:

四边形ABCD是面积为12的平行四边形;

(2)如图所示:

△EFP是面积为$\frac{15}{2}$的等腰三角形.

点评 本题主要考查了利用图形的基本变换进行作图,作图时需要运用平行四边形的性质以及等腰三角形的性质进行计算.注意:平行四边形是中心对称图形,等腰三角形是轴对称图形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为(  )
A.16B.24C.4$\sqrt{13}$D.8$\sqrt{13}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,点O为坐标原点,抛物线y=a(x-h)2+8(a≠0,a,h为常数)与x轴交于点A,B(点A在点B的左侧),与y轴的正半轴交于点C,且AB=12,B(9,0).
(1)如图1,求a,h的值;
(2)如图2,点P在第一象限对称轴右侧的抛物线上,PE⊥x轴于点E,交线段BC于点D,点F在线段BD上,且PD=$\frac{\sqrt{13}}{5}$PF,FQ⊥BC,交直线PE于点Q,当PQ=8时,求点P的坐标;
(3)如图3,在(2)的条件下,R是线段CD上一点,过点R作RG平行于x轴,与线段PQ交于点G,连接OG,OQ,恰好使∠GOQ=45°,延长QR到点H,使QR=RH,连接AH,求线段AH的长,并直接判断点H是否在此抛物线上?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点.求证:直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)若关于x,y的二元一次方程组$\left\{\begin{array}{l}{2x+ay=16}\\{x-2y=0}\end{array}\right.$的解为正整数,则正整数a的值为4或12.
(2)已知a,b均为正数,且a+b=2,则m=$\sqrt{{a}^{2}+4}$+$\sqrt{{b}^{2}+1}$的最小值为$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知x为实数,且$\frac{3}{{x}^{2}+9x}-({x}^{2}+9x)=2$,那么x2+9x的值为(  )
A.1B.-3或1C.3D.-1或3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知一个直角三角形的两条边长分别是6和8,则第三边长是(  )
A.10B.8C.2$\sqrt{7}$D.10或2$\sqrt{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.一个等腰三角形的两条边长分别是方程x2-7x+10=0的两根,则这个等腰三角形的腰长是(  )
A.2B.5C.2或5D.3或4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.边长为6的等边三角形的高为3$\sqrt{3}$.

查看答案和解析>>

同步练习册答案