分析 由OB、OC为△ABC的角平分线,DE∥BC交AB、AC于D、E,易得△BOD与△COE是等腰三角形,继而可得DE=BD+EC;易得AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=10,继而求得答案.
解答 解:∵OB、OC为△ABC的角平分线,
∴∠ABO=∠OBC,∠ACO=∠BCO,
∵DE∥BC,
∴∠DOB=∠OBC,∠EOC=∠OCB,
∴∠ABO=∠DOB,∠ACO=∠EOC,
∴BD=OD,EC=OE,
∴DE=OD+OE=BD+EC;
∵△ADE的周长为10,
∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=10,
∵BC=8,
∴△ABC的周长为:AB+AC+BC=10+8=18.
点评 本题考查了等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com