精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,EAB的中点,FAD上一点,EFAC于点G,则AC的长为___

【答案】30 cm

【解析】

延长FGCB的延长线于点H,根据平行四边形的性质,得BCAD12cmBCAD,根据AAS可以证明AFE≌△BHE,则BHAF4cm,再根据BCAD,利用平行线分线段成比例定理,求得CG的长,从而求得AC的长.

解:延长FGCB的延长线于点H

∵四边形ABCD是平行四边形,

BCAD8+412cmBCAD

∴∠EAF=∠EBH,∠AFE=∠BHE

AFEBHE中,

∴△AFE≌△BHEAAS),

BHAF4cm

HC=16cm

BCAD

,即

CG24

ACAGCG30cm

故答案为:30 cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.

(1)请直接写出D点的坐标.

(2)求二次函数的解析式.

(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的一边OAx轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若COD的面积为20,则k的值等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC=6,BD=6,EBC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是(  )

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交舡于点G,连接DG.

(1)求证:四边形EFDG是菱形;

(2) 求证:

(3)若AG=6,EG=2,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EAB边上一点,EC平分∠DEBFCE的中点,连接AFBF,过点EEHBC分别交AFCDGH两点.

(1)求证:DE=DC

(2)求证:AFBF

(3)当AFGF=28时,请直接写出CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且OC=3OA.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点D,连接PC.

(1)求抛物线的解析式;

(2)如图2,当动点P只在第一象限的抛物线上运动时,求过点P作PF⊥BC于点F,试问△PDF的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由.

(3)当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四边形CDPQ是否成为菱形?如果能,请求出此时点P的坐标,如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图,抛物线轴交于两点,点在抛物线上(点两点不重合),如果的三边满足,则称点为抛物线的勾股点。

()直接写出抛物线的勾股点的坐标;

()如图,已知抛物线轴交于两点,点是抛物线的勾股点,求抛物线的函数表达式;

()()的条件下,点在抛物线上,求满足条件的点(异于点)的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字23且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为的值,两次结果记为.

(1)请你帮他们用画树状图或列表的方法表示所有可能出现的结果;

(2)若将记录结果看成平面直角坐标系中的一点,求是第一象限内的点的概率.

查看答案和解析>>

同步练习册答案