【题目】如图,在中,E为AB的中点,F为AD上一点,EF交AC于点G,,,,则AC的长为___.
【答案】30 cm
【解析】
延长FG交CB的延长线于点H,根据平行四边形的性质,得BC=AD=12cm,BC∥AD,根据AAS可以证明△AFE≌△BHE,则BH=AF=4cm,再根据BC∥AD,利用平行线分线段成比例定理,求得CG的长,从而求得AC的长.
解:延长FG交CB的延长线于点H,
∵四边形ABCD是平行四边形,
∴BC=AD=8+4=12cm,BC∥AD,
∴∠EAF=∠EBH,∠AFE=∠BHE,
在△AFE与△BHE中,,
∴△AFE≌△BHE(AAS),
∴BH=AF=4cm,
∴HC=16cm,
∵BC∥AD,
∴,即,
∴CG=24,
则AC=AG+CG=30cm,
故答案为:30 cm.
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交舡于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2) 求证: ;
(3)若AG=6,EG=2,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.
(1)求证:DE=DC;
(2)求证:AF⊥BF;
(3)当AFGF=28时,请直接写出CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且OC=3OA.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点D,连接PC.
(1)求抛物线的解析式;
(2)如图2,当动点P只在第一象限的抛物线上运动时,求过点P作PF⊥BC于点F,试问△PDF的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由.
(3)当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四边形CDPQ是否成为菱形?如果能,请求出此时点P的坐标,如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图,抛物线与轴交于两点,点在抛物线上(点与两点不重合),如果的三边满足,则称点为抛物线的勾股点。
()直接写出抛物线的勾股点的坐标;
()如图,已知抛物线:与轴交于两点,点是抛物线的勾股点,求抛物线的函数表达式;
()在()的条件下,点在抛物线上,求满足条件的点(异于点)的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字,2,3且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为的值,两次结果记为.
(1)请你帮他们用画树状图或列表的方法表示所有可能出现的结果;
(2)若将记录结果看成平面直角坐标系中的一点,求是第一象限内的点的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com