精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣ax+6与x轴负半轴交于点A,与x轴的正半轴交于点B,且AB=7.

(1)如图1,求a的值;
(2)如图2,点P在第一象限内抛物线上,过P作PH∥AB,交y轴于点H,连接AP,交OH于点F,设HF=d,点P的横坐标为t,求d与t之间的函数关系式,并直接写出t的取值范围;
(3)如图3,在(2)的条件下,当PH=2d时,将射线AP沿着x轴翻折交抛物线于点M,在抛物线上是否存在点N,使∠AMN=45°,若存在,求出点N的坐标.若不存在,请说明理由.

【答案】
(1)

解:∵抛物线y=ax2﹣ax+6与x轴负半轴交于点A,与x轴的正半轴交于点B,且AB=7,

又∵对称轴x=﹣ =

∴A(﹣3,0),B(4,0),

把(﹣3,0)代入y=ax2﹣ax+6得a=﹣


(2)

解:由抛物线的解析式为y=﹣ x2+ x+6,设P(t,﹣ t2+ t+6),

∵PH∥OA,HF=d,OF=﹣ t2+ t+6﹣d,PH=t,OA=3,

=

∴d= t=﹣ +2t(0<t<4)


(3)

解:∵t=PH=2d,

∴d=

=﹣ t2+2t,

解得t=3或0(舍弃),

∴P(3,3),点P关于x轴的对称点K(3,﹣3),

∴直线AM的解析式为y=﹣ x﹣

解得

∵A(﹣3,0),

∴M(5,﹣4),

如图3中,将线段MA绕点M顺时针旋转90°得到线段MG,过点A作y轴的平行线,过点M作x轴的平行线,两直线交于点E,作GD⊥EM交EM的延长线于D.

易知△AME≌△MGD,∴AE=DM=4,EM=DG=8,

∴G(9,4),

取线段AG的中点T(3,2),作直线MT交抛物线于N1,此时∠AMN1=45°,

∵直线MT的解析式为y=﹣3x+11,

解得

∵M(5,﹣4),

∴N1(2,5).

设点G关于直线AM的对称点为G1,则G1(1,﹣12),取AG1的中点T1,作直线MT1交抛物线于N2,则∠N2MA=45°,

∵直线MT1的解析式为y= x﹣

解得

∵M(5,﹣4),

∴N2(﹣ ,﹣ ).

综上所述,满足条件的点M的坐标为(2,5)或(﹣ ,﹣ ).


【解析】(1)根据对称轴x= ,以及AB=7,可得A(﹣3,0),B(4,0),利用待定系数法即可求出a的值.(2)由抛物线的解析式为y=﹣ x2+ x+6,设P(t,﹣ t2+ t+6),由PH∥OA,HF=d,OF=﹣ t2+ t+6﹣d,PH=t,OA=3,得到 ,列出方程即可解决问题.(3)首先求出直线AM的解析式,利用方程组求得点M的坐标,分两种情形讨论①如图3中,将线段MA绕点M顺时针旋转90°得到线段MG,过点A作y轴的平行线,过点M作x轴的平行线,两直线交于点E,作GD⊥EM交EM的延长线于D.易知△AME≌△MGD,推出AE=DM=4,EM=DG=8,推出G(9,4),取线段AG的中点T(3,2),作直线MT交抛物线于N1 , 此时∠AMN1=45°,求出直线MT的解析式利用方程组求出交点N的坐标.②设点G关于直线AM的对称点为G1 , 则G1(1,﹣12),取AG1的中点T1 , 作直线MT1交抛物线于N2 , 则∠N2MA=45°,求出直线MT1的解析式,利用方程组即可求出点N1的坐标.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,E,F分别是ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为(
A.6
B.12
C.18
D.24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A,C重合),DE与AB相交于点F,则图中有( )对相似三角形.

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AD⊥BC于点D,点E为AC边的中点,过点A作AF∥BC,交DE的延长线于点F,连接CF.
(1)如图1,求证:四边形ADCF是矩形;
(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.
(1)在方格纸中画出以AB为一边的直角△ABC,点C在小正方形的顶点上,且△ABC的面积为3.
(2)在方格纸中将△ABC绕点C逆时针旋转90°,画出旋转后△DEC(点A与点D对应,点B与点E对应),请直接写出点A绕着点C旋转的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】当a≠0时,函数y=ax+1与函数y= 在同一坐标系中的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某中学九年级学生中考体育成绩情况,现从中抽取部分学生的体育成绩进行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)统计,统计结果如图所示.
根据上面提供的信息,回答下列问题:
(1)本次抽查了多少名学生的体育成绩;
(2)补全图9.1,求图9.2中D分数段所占的百分比;
(3)已知该校九年级共有900名学生,请估计该校九年级学生体育成绩达到40分以上(含40分)的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,
(1)求证:△DEK∽△DFB;
(2)求y关于x的函数解析式并写出定义域;
(3)联结CD,当 = 时,求x的值.

查看答案和解析>>

同步练习册答案