【题目】正方形ABCD内一点P,AB=5,BP=2,把△ABP绕点B顺时针旋转90°得到△CBP',则PP'的长为( )
A.2
B.
C.3
D.3
【答案】A
【解析】解:∵△ABP绕点B顺时针旋转90°得到△CBP',
而四边形ABCD为正方形,BA=BC,
∴BP=BP′,∠PBP′=90,
∴△BPP′为等腰直角三角形,
而BP=2,
∴PP′= BP=2 .
故选A.
【考点精析】认真审题,首先需要了解勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2),还要掌握正方形的性质(正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】某市居民使用自来水按如下标准收费(水费按月缴纳):
户月用水量 | 单价 |
不超过12 m3的部分 | a元∕m3 |
超过12 m3但不超过20 m3的部分 | 1.5a元∕m3 |
超过20 m3的部分 | 2a元∕m3 |
(1) 当a=2时,某用户一个月用了28 m3水,求该用户这个月应缴纳的水费;
(2) 设某户月用水量为n 立方米,当n>20时,则该用户应缴纳的水费_____________元(用含a、n的整式表示);
(3) 当a=2时,甲、乙两用户一个月共用水40 m3,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3,,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.求证:
(1)△AEF≌△BEC;
(2)四边形BCFD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线OD与x轴所夹的锐角为30°,OA的长为2,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均为等边三边形,点A1、A2、A3…An﹣1在x轴正半轴上依次排列,点B1、B2、B3…Bn在直线OD上依次排列,那么点B2的坐标为_____,点Bn的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形OABC的边长为1,把它放在如图所示的直角坐标系中,点M(t,0)是x轴上一个动点(t≥1),连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与x轴交于点D,与y轴交于点E,当△PDE为等腰直角三角形时,点P的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从右边的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0,②c=0,③函数的最小值为﹣3,④当x<0时,y>0,⑤当0<x1<x2<2时,y1>y2 , ⑥对称轴是直线x=2.你认为其中正确的个数为( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积S△MCB .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自2014年12月28日北京公交地铁调价以来,人们的出行成本发生了较大的变化. 小林根据新闻,将地铁和公交车的票价绘制成了如下两个表格。(说明:表格中“6~12公里”指的是大于6公里,小于等于12公里,其他类似)
|
|
根据以上信息回答下列问题:
小林办了一张市政交通一卡通学生卡,目前乘坐地铁没有折扣。
(1)如果小林全程乘坐地铁的里程为14公里,用他的学生卡需要刷卡交费________元;
(2)如果小林全程乘坐公交车的里程为16公里,用他的学生卡需要刷卡交________元;
(3)小林用他的学生卡乘坐一段地铁后换乘公交车,两者累计里程为12公里。已知他乘坐地铁平均每公里花费0.4元,乘坐公交车平均每公里花费0.25元,此次行程共花费4.5元。请问小林乘坐地铁和公交车的里程分别是多少公里?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将线段AB绕点A逆时针旋转60°得AC,连接BC,作△ABC的外接圆⊙O,点P为劣弧 上的一个动点,弦AB,CP相交于点D.
(1)求∠APB的大小;
(2)当点P运动到何处时,PD⊥AB?并求此时CD:CP的值;
(3)在点P运动过程中,比较PC与AP+PB的大小关系,并对结论给予证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com