精英家教网 > 初中数学 > 题目详情
已知如图,二次函数y=ax2+bx+c的图象过A、B、C三点
(1)观察图象写出A、B、C三点的坐标;
(2)求出二次函数的解析式.
(1)由图象可得,A(-1,0),B(0,-3),C(4,5),

(2)设二次函数的解析式为y=ax2+bx+c,
把A(-1,0),B(0-3),C(4,5)分别代入解析式得,
a-b+c=0①,
c=-3②,
16a+4b+c=5③,
解由①②③组成的方程组得,a=1,b=-2,c=-3,
∴y=x2-2x-3,
所以二次函数的解析式为y=x2-2x-3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图是一座抛物线型拱桥,以桥基AB为x轴,AB的中垂线为y轴建立直角坐标系.已知桥基AB的跨度为60米,如果水位从AB处上升5米,就达到警戒线CD处,此时水面CD的宽为30
2
米,求抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,y轴是边长为2的等边△BAD的对称轴,x轴是等腰△BDC的对称轴.
(1)试求出经过点A、点B,且对称轴为直线x=1的抛物线的解析式;
(2)把△BDC沿着直线BD翻折后,得到△BDC'.
①问点C'是否在(1)中的抛物线上?
②设BC'交直线x=1于点Q.若点P是(1)中的抛物线上的一个动点,过点P作PT⊥直线x=1,垂足为T,问:在抛物线上是否存在着点P,使得以P、T、Q为顶点的三角形与△QDC'相似?若存在,写出所有符合上述条件的点P的横坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.
(1)求此抛物线的解析式及顶点D的坐标;
(2)问点P在何处时,线段PQ最长,最长为多少;
(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:如图所示,一次函数有y=-2x+3的图象与x轴、y轴分别交于A、C两点,二次函数y=x2+bx+c的图象过点C,且与一次函数在第二象限交于另一点B,若AC:CB=1:2,那么这二次函数的顶点坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
11
4
时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用长20m的篱笆,一面靠墙围成一个长方形的园子,怎么围才能使园子的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y件之间有如下关系:
x35911
y181462
(1)在直角坐标系中
①根据表中提供的数据描出实数对(x,y)的对应点;
②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.并说明当x≥12时对应图象的实际意义.
(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律:
①试求日销售利润P元与日销售单价x元之间的函数关系式;
②当日销售单价x为多少元时,才能获得最大日销售利润?试问日销售利润P是否存在最小值?若有,试求出,并说明其实际意义;若无,请说明理由.

查看答案和解析>>

同步练习册答案