精英家教网 > 初中数学 > 题目详情

【题目】矩形的两条对角线的夹角为,对角线长为,则较短的边长为________

【答案】

【解析】

根据题意画出对应图形,∠AOD=BOC=60°,则∠COD=120°>AOD=60°,AD是该矩形较短的一边,根据矩形的性质:矩形的对角线相等且互相平分,所以有OA=OD=OC=OB=6,又因为∠AOD=BOC=60°,所以AD=OA=0D=6.

如下图所示:矩形ABCD,对角线AC=BD=12,AOD=BOC=60°

∵四边形ABCD是矩形
OA=OD=OC=OB=×12=6(矩形的对角线互相平分且相等)
又∵∠AOD=BOC=60°,
OA=OD=AD=6,
∵∠COD=120°>AOD=60°
AD<DC
所以该矩形较短的一边长为6,
故答案是:6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,ABACDE垂直平分AB,分别交ABAC于点ED

1)若∠ADE40°,求∠DBC的度数;

2)若BC6CDB的周长为15,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4/件,结果共用去17.6万元.

(1)该商场第一批购进衬衫多少件?

(2)商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面图形上的任意两点,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点,保持,我们把这种对应点连线相等的变换称为同步变换.对于三种变换:

①平移、②旋转、③轴对称,

其中一定是同步变换的有________(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线yx+2x轴交于点A,与y轴交于点C.抛物线yax2+bx+c的对称轴是x且经过AC两点,与x轴的另一交点为点B

1)求抛物线解析式.

2)若点P为直线AC上方的抛物线上的一点,连接PAPC.求PAC的面积的最大值,并求出此时点P的坐标.

3)抛物线上是否存在点M,过点MMN垂直x轴于点N,使得以点AMN为顶点的三角形与ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进甲、乙两种商品,甲种商品共用了元,乙种商品共用了元.已知乙种商品每件进价比甲种商品每件进价多元,且购进的甲、乙两种商品件数相同.

求甲、乙两种商品的每件进价;

该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为元,乙种商品的销售单价为元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的九折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于元,问甲种商品按原销售单价至少销售多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,∠ABC=90°DAB延长线上一点,点EBC边上,且BE=BD,连结AEDEDC

①求证:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业在甲地有一工厂(简称甲厂)生产某产品,2017年的年产量过万件,2018年甲厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2.

1)若甲厂2018年生产200件该产品所需的时间与2017年生产99件该产品所需的时间相同,则2017年甲厂日均生产该产品多少件?

2)由于该产品深受顾客欢迎,2019年该企业在乙地建立新厂(简称乙厂)生产该产品.乙厂的日均生产的该产品数是甲厂2017年的3倍还多4.同年该企业要求甲、乙两厂分别生产mn件产品(甲厂的日均产量与2018年相同),m:n14:25,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点边上一点,点边上两点,且,作点关于的对称点点,连接.

1)依题意补全图形;

2)猜想______°,并证明;

3)猜想线段的数量关系______,并证明.

查看答案和解析>>

同步练习册答案